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ABSTRACT 

 Halide perovskites and germanium semiconductors are promising materials for 

many optical applications such as solar cells and LEDs due to their unique photophysical 

properties. Compositional substitution and dimensional manipulation can enhance physical 

or chemical properties of perovskite and germanium semiconductors which in turn 

promotes their performance in optoelectronic devices. In this thesis, we report the synthetic 

exploration of composition-control and dimensionality-control of organometal halide 

perovskite crystals by tuning halide-incorporation and exploiting bulky alkylammonium 

cations as capping ligands. We also demonstrate a systematic synthesis of all the series of 

mixed halide perovskite polycrystals and their low dimensional analogues. By optimizing 

synthetic conditions, we are able to inhibit the appearance of a reversible photoinduced PL 

peak derived from surface traps. 

We also synthesize lead-free perovskites for the environmental concerns. Lead is a 

heavy metal element and its potential toxicity raises concerns for environmental 

compatibility. To address this problem, we developed a synthetic route to antimony 

perovskites and germanium perovskites. Surface-bound (CH3)3Sb2I9 layers restrict the 

growth of CH3NH3PbI3, resulting in CH3NH3PbI3 nanocrystals. Compared to the bulk 

perovskites, the antimony-capped nanocrystals show stronger photoluminescence. With a 

direct bandgap of 1.6 eV and a corner-sharing octahedral network crystal structure that are 

comparable to CH3NH3PbI3, CsGeI3 is potentially promising for photovoltaic applications. 

To manipulate the optoelectronic properties, we doped high-spin, divalent manganese ions 

(Mn2+) into the octahedral Ge2+ sites of CsGeI3. Electron paramagnetic resonance (EPR) 

helps us better understand the local ion environment and composition of both CsGeI3 and 

its doped analogue (CsGe1-xMnxI3). Our results expand the lead-free halide perovskite 
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family and set the stage for their application beyond photovoltaics to spintronics and 

magnetic data storage. 

Finally, we fabricated and characterized Ge1-xSnx alloy nanocrystals and Ge1-xSnx 

core/shell nanocrystals. Germanium has an indirect bandgap of 0.66 eV, which is too 

narrow for ideal solar cell light harvester materials and limits their absorption efficiency. 

By tin incorporation and quantum confinement effect, we could enhance their efficiency of 

solar absorption and in turn their quantum yield. We synthesized Ge1-xSnx and Ge1-

xSnx/CdS core/shells in solution phase. Inclusion of tin is confirmed by X-ray diffraction 

and Raman peak shift. Tin alone does not result in enhanced photoluminescence intensity, 

however, adding an epitaxial CdS shell onto the Ge1-xSnx nanocrystals does enhance the 

photoluminescence up to 15× over Ge/CdS nanocrystals with a pure Ge core. More 

effective passivation of surface defects—and a consequent decrease in surface oxidation—

by the CdS shell as a result of improved epitaxy (smaller lattice mismatch) is the most 

likely explanation for the increased photoluminescence observed for the Ge1-xSnx/CdS 

materials. With enhanced photoluminescence in the near-infrared, Ge1-xSnx core/shell 

nanocrystals might be useful alternatives to other materials for energy capture and 

conversion applications and as imaging probes. 
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CHAPTER 1.    INTRODUCTION 

General Introduction 

With increasing need for energy in modern society, humans are always in the 

pursuit for clean and sustainable energy. Solar energy is one of the most important clean 

energy sources. Solar energy is basically unlimited: the total solar energy absorbed by Earth 

in one hour is more than the energy used by humans in one year.1 If humans can utilize 

solar energy efficiently, oil crisis will be relieved. Solar energy is also a clean energy. 

Unlike fossil fuel, when solar energy is converted to electricity or chemical energy, no 

pollution or greenhouse gas will be generated. Compared to other clean energy sources 

such as nuclear energy, solar energy is safer and easier to obtain. People can easily install 

a solar panel on their roofs and enjoy the heat and electricity powered by solar light.  

Currently the most common material for solar panels is high purity silicon. The best 

record for single junction silicon solar cells is 25%.2 Efforts have been made to push the 

efficiency even better for decades, but there is a theoretical limit for silicon solar cells, 

which is 32%. This efficiency limit is known as Shockley–Queisser limit (Figure 1).3 When 

searching for the best photovoltaic materials, we are looking for the semiconductors with 

small bandgap that can allow the materials to absorb a large portion of solar light. But a 

small bandgap also brings small output voltage that limits the power of the solar cells. Due 

to these two opposite effects, the best photovoltaic material should have a bandgap around 

1.34 eV. The bandgap of silicon is 1.1 eV which is relatively smaller than the ideal bandgap. 

Also, due to the indirect nature of silicon’s bandgap, silicon has a relatively low absorption 

coefficient, which limits their absorption efficiency for sunlight and thus constrains the 

solar cell efficiency. Another factor that limits silicon solar cells is the purity of silicon. 

Impurity can lower the efficiency, so silicon single crystal is preferred in solar panels due 

to their high purity. Even though the energy harvesting process is clean, the fabrication 
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process of high purity silicon costs lots of energy and generates toxic gases that pollute our 

environment. To address the problems and limits silicon solar cells have, researchers are 

seeking new materials to substitute silicon as sunlight harvesting materials. 

 

 

Figure 1. The Shockley-Queisser limit for the efficiency of a solar cell, without 

concentration of solar radiation.3 

 Perovskites, named after a Russian mineralogist Lev Perovski, have garnered great 

interest for their outstanding performance in solar cells. Perovskites have a general 

composition of ABX3
 such as CaTiO3. For solar cells halide perovskites, especially 

methylammonium lead iodide perovskites CH3NH3PbI3 (Figure 2),4 are widely used due to 

their suitable bandgap, long carrier diffusion length and defect tolerant properties.5-8 The 

efficiency for perovskite solar cells was only 3.8% in 2009,9 but it only took 8 years to push 

the efficiency up to 22% (Figure 3).10 Compared to silicon semiconductors, perovskites 

with a direct bandgap of 1.5 eV are more suitable as photovoltaic materials. Even compared 

to other newly emerging light harvesting materials, such as dye sensitized solar cells or 

organic photovoltaic materials, perovskite solar cells also demonstrate unprecedented rate 

of progress in power conversion efficiency.  
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Figure 2. perovskite crystal structure where CH3NH3
+ cation occupies the center of the unit 

cells, [PbI6]4- forms octahedra and occupies the corners of the unit cells.4 

 

Figure 3. Illustration of the rapid increase in perovskite cell efficiencies. The increase 

achieved in the past four years is particularly notable. The cells have already achieved 

documented efficiencies >20%, which represents an unprecedented rate of progress 

compared to any other solar technology.10 

 Not only can perovskites be used in solar cells, they also show great potential in 

light-emitting devices due to their high quantum yields.11-16 Due to the versatility of their 
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composition, which means a variety of metal/organic cations and halide anions can form 

perovskite structure, their emission energy can actually be tuned by composition and the 

photoluminescence spectra can cover the whole visible light region. A detailed study on 

composition-tunable perovskites is discussed in Chapter 2. Recently CsPbX3 (X = Cl, Br 

and I) nanocrystals have been synthesized and their photoluminescence properties are even 

better than their organic analogues.17 With high quantum yields, narrow emission line-

widths and long PL lifetime, their application in LED, laser generators and the next 

generation colorful display will be promising.  

 One thing that may limit perovskite solar cells from commercialization is lead 

element (Pb) in perovskites. The element lead is a toxic, heavy metal that attacks the 

nervous and reproductive systems in humans and also raises concerns for environmental 

compatibility.18-20 To address this problem, we performed the synthesis and 

characterization on antimony-based and germanium-based perovskites, which are 

discussed in Chapter 3 and 4.   

 Another light harvesting material with good potential for use solar cells is 

germanium. Even though germanium has an indirect bandgap like silicon, it is reported the 

indirect bandgap can be converted into direct bandgap by strain or doping (Figure 4).21-27 

With a converted direct bandgap, germanium will have a higher absorption coefficient and 

be more promising as an alternative for silicon solar cells. In Chapter 5, we discuss the 

synthesis and characterization of doping Sn into Ge nanocrystals and coat the Ge1-xSnx 

cores with CdS shells. Due to the lattice mismatch between Ge1-xSnx and CdS, CdS should 

exert a tensile strain on Ge lattice and might convert the indirect bandgap of Ge1-xSnx to 

direct bandgap. Our group previously reported Ge/CdS core/shell nanocrystals have a much 

better PL intensity than the bare Ge.28 Here, we extend our synthetic exploration to Ge1-

xSnx /CdS and study how tin incorporation may affect optical properties of Ge nanocrystals.  
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Figure 4. Calculated band structure for GeSn with 5% Sn and 25% Sn.23 

Thesis Organization 

This thesis consists of two parts. The first part discusses the synthesis of halide 

perovskites, including lead perovskites in Chapter 2, antimony perovskites in Chapter 3 

and germanium perovskites in Chapter 4. Chapter 5 is the second part where we 

investigated Ge1-xSnx /CdS core/shell nanocrystals and their enhanced photoluminescence.  

Chapter 2 discusses the systematic synthesis of mixed halide perovskites and their 

abnormal photoluminescence behavior during illumination. In Chapter 3 we report 

antimony perovskites as capping agents for lead perovskites. In Chapter 4 we describe the 

soft chemistry, dimensionality control of germanium perovskites and manganese 

incorporation in germanium perovskites. Chapter 5 is dedicated to the synthesis of Ge1-xSnx 

/CdS core/shell heterostructures and their enhanced photoluminescence properties.  This 

was done in collaboration with Drs. Emily Smith and Jacob Petrich and their group in Iowa 

State University.   
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CHAPTER 2.    MIXED HALIDE ORGANOLEAD PEROVSKITES: 

DIMENSIONALITY CONTROL AND ROLE OF EXCESS PRECURSOR ON 

PHOTOLUMINESCENCE STABILITY 

Long Men, Daniel J. Freppon, Ujjal Bhattacharjee, Feng Zhu, Bryan A. Rosales, Jacob 

W. Petrich, Emily A. Smith, Javier Vela 

Abstract 

Organometal halide perovskites of general composition CH3NH3PbX3 (X = I, Br, 

Cl) have drawn great attention as photovoltaic materials as well as fluorophores due to their 

low cost and unique photophysical properties. Compositional substitution and dimensional 

manipulation can enhance the stability of perovskite crystals against moisture, heat and 

light, which in turn promotes their performance in optoelectronic devices. In this study, we 

combine composition-control with dimensionality-control of organometal halide 

perovskite crystals by tuning halide incorporation and exploiting bulky alkylammonium 

cations as capping ligands. We demonstrate a systematic synthesis of all the series of mixed 

halide perovskite polycrystals and their low dimensional analogues. Both structural and 

optical properties exhibit a non-linear relationship between synthetic loadings vs. 

compositions, which to our knowledge has not been reported yet. We speculate this non-

linear behavior is caused by the differences in structure phases, halide radii, precursor 

reactivities, lattice entropies and precursor solubilities. Also, by optimizing synthetic 

conditions, we are able to inhibit the appearance of a reversible photoinduced PL peak 

derived from surface traps. 

Introduction 

Organolead halide perovskites of general composition RPbX3 (R = organic 

monocation such as CH3NH3
+, X = I, Br, Cl) have drawn great attention as both 

photovoltaic materials1-8 and fluorophores.9-14 The certified power conversion efficiency of 

perovskite solar cells surged from 3.8% to over 20% in the last five years.15-19 Broad light 
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absorption and long carrier diffusion lengths make perovskites ideal light harvesters.20 

Because of their composition-tunable bandgap and high photoluminescence quantum yield, 

perovskites are also of interest as light-emitting materials.21 In spite of these many 

advantages, organometal perovskites suffer from instability against moisture, heat and 

light.22, 23 A deeper understanding of the fundamental physical and chemical behavior of 

perovskites could help in mitigating these instability issues, thus enabling their 

implementation and deployment into useful energy technologies. 

Efforts to improve the physical and chemical properties of perovskites are focused 

on tuning their composition or dimensionality.24, 25 Compositional flexibility makes these 

materials very interesting from both a fundamental and applied perspectives. Substituting 

CH3NH3
+ with other cations such as formamidinium (HN=CHNH3

+) or cesium (Cs+) leads 

to superior devices with enhanced short-circuit current or increased thermal stability, 

respectively.26-28 Dimensionality controls may be useful in tuning the bandgap energies of 

some perovskite materials via quantum confinement. Partial substitution with long 

alkylammonium cations leads to low dimensional perovskites,29 some of which exhibit 

enhanced moisture stability.30 Halide substitution also leads to enhanced stability, as 

CH3NH3PbI3 solar cells doped with Br show long-lasting resistance against humidity.31, 32 

CH3NH3PbBr3 displays lower sensitivity to concentrated sun-light compared to 

CH3NH3PbI3.33 Halide incorporation or “doping” has been widely exploited in enhancing 

the power conversion efficiency of perovskite solar cells.34, 35 Because of the different 

optical properties of different compositions, for example CH3NH3PbCl3 (3.1 eV, 400 nm), 

CH3NH3PbBr3 (2.3 eV, 540 nm) and CH3NH3PbI3 (1.5 eV, 820 nm),36  compositional 

variation leads to mixed perovskites whose bandgap and emission energies cover the entire 

visible spectrum.37, 38  
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A few reports describe the unusual photophysical behavior of organometal halide 

perovskites, and specifically their reversible shift in PLmax under thermal vs. photochemical 

conditions.39-41 Often attributed to the formation of different halide-rich surface clusters, 

these structural defects may account for the notorious photocurrent hysteresis42 and 

decreased quantum efficiency43 that characterizes perovskite semiconductors and devices. 

Calculations reveal the unusual defect physics of CH3NH3PbX3: dominant intrinsic defects 

create only shallow levels,44-47 which partially explain the long electron-hole diffusion 

length and high open-circuit voltage in solar cells.48 Because they are caused by surface 

defects, these unusual photophysics may become even more prominent in low dimensional 

perovskites.49  

Trap states in perovskites. CH3NH3PbI3 and CH3NH3PbI3-xClx emit intensively and 

the peak is broad. The nature of the radiative decay channels and the spectral broadening 

mechanisms most likely result from phonon coupling effects and defects or trap states.50 

The trap states, possibly caused by electron−phonon coupling, are enhanced at 

surfaces/interfaces where the perovskite crystal structure is most susceptible to deformation, 

which are even more significant in 2D perovskites.51 Elemental defects like Pb, I, and 

CH3NH3 vacancies can also form shallow trap states and reduce carrier lifetime.52 Both Pb 

cations and I anions exhibit strong covalency, which leads to the formation of Pb dimers 

and I trimers in intrinsic defects and is responsible for deep transition levels which can 

serve as recombination centers harmful for solar cells.53 Synthesis condition plays an 

important role in the formation of trap states: perovskites grown under iodine-rich 

conditions are likely to have a high density of deep electronic traps (recombination centers) 

and the formation of key defects (Pb atom substituted by I) which causes short diffusion 

lengths and poor photovoltaic performance.54   
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Additives. Supramolecular halogen bond complexation can passivate the under-

coordinated iodine ions, which can reduce trap sites near the perovskite surface;55 whereas 

Lewis bases are used to passivate under-coordinated Pb atoms and treated perovskites 

demonstrate reduced nonradiative electron hole recombination and longer PL lifetimes.56  

Other interface engineering, such as adding fullerene layers, has also proven to be an effect 

way to passivate the charge trap states and get rid of photocurrent hysteresis.57, 58 

Here, by tuning halide-incorporation and exploiting bulky alkylammonium cations 

as capping ligands, we combine composition-control with dimensionality-control. Building 

on our previous work, we demonstrate a systematic synthesis of all the series of mixed 

halide perovskite polycrystals and their low dimensional forms. We also study their 

structural and optical properties, which exhibit a non-linear relationship between synthetic 

loadings vs. compositions. To our knowledge it has not been reported yet. We attribute this 

bowing behavior to the differences in structure phases, halide radii, precursor reactivities, 

lattice entropies and precursor solubilities. Also, by optimizing synthetic conditions, we are 

able to inhibit the appearance of a reversible ‘blue’ PL peak derived from surface traps. 

Experimental Section 

Materials. Lead(II) iodide (99%), lead(II) bromide (≥ 98%), methylamine (33 wt% 

in ethanol), N, N-dimethylformamide (DMF) (anhydrous, 99.8%) and n-octylamine (99%) 

were purchased from Sigma-Aldrich. Hydroiodic acid (ACS, 55-58%), hydrobromic acid 

(ACS, 47.0-49.0%) and oleic acid (tech., 90%) from Alfa-Aesar; acetonitrile (99.9%) and 

toluene (99.9%) from Fisher; diethyl ether from Baker. All chemicals were used as received 

unless specified otherwise. 

Synthesis. Ammonium Halides. Hydrogen halides were prepared by a modified 

literature procedure.52 Briefly, hydroiodic acid (10 mL, 0.075 mol), hydrobromic acid (8.6 

mL, 0.075 mol), or hydrochloric acid (6.2 mL, 0.075 mol) was added to a solution of excess 
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methylamine (24 mL, 0.192 mol) in ethanol (100 mL) at 0 °C, and the mixture stirred at 

this temperature for 2 h. The sample was concentrated under vacuum, and the resulting 

powder dried under dynamic vacuum at 60 °C for 12 h and recrystallized from ethanol. n-

Octylammonium iodide (CH3(CH2)7NH3I), n-octylammonium bromide 

(CH3(CH2)7NH3Br), and n-octylammonium chloride (CH3(CH2)7NH3Cl) were washed 

repeatedly with diethyl ether and dried under dynamic vacuum before use. 

Bulk (polycrystalline) CH3NH3Pb(ClxBr1-x)3. Cl Solution. PbCl2 (11.1 mg, 0.04 

mmol) and CH3NH3Cl (2.8 mg, 0.04 mmol) were dissolved in DMF (1 mL). Br Solution. 

PbBr2 (14.7 mg, 0.04 mmol) and CH3NH3Br (4.6 mg, 0.04 mmol) were dissolved in DMF 

(1 mL). Solutions Cl and Br were mixed in different proportions or relative halide loadings 

to a total volume of 100 µL, followed by the rapid addition of toluene (10 mL) while stirring 

in air. After 24 h stirring at room temperature (R.T., 294 K), solids were isolated by 

centrifugation (10 min at 4000 rpm). The solids were washed once by dissolution in toluene 

(5 mL) and re-centrifugation. Low-dimensional (nano) CH3NH3Pb(ClxBr1-x)3. Cl Solution. 

PbCl2 (11.1 mg, 0.04 mmol), CH3NH3Cl (1.4 mg, 0.02 mmol) and CH3(CH2)7NH3Cl (3.3 

mg, 0.02 mmol) were dissolved in DMF (1 mL). Br Solution. PbBr2 (14.7 mg, 0.04 mmol), 

CH3NH3Br (2.3 mg, 0.02 mmol) and CH3(CH2)7NH3Br (4.2 mg, 0.02 mmol) were 

dissolved in DMF (1 mL). After 24 h stirring at room temperature (R.T., 294 K), solids 

were isolated and purified as specified above for the bulk samples. 

Bulk (polycrystalline) CH3NH3Pb(BrxI1-x)3. Br Solution. PbBr2 (2.9 mg, 0.008 

mmol) and CH3NH3Br (2.6 mg, 0. 024 mmol) were dissolved in a mixture of acetonitrile 

(20mL) and DMF (0.2 mL). I Solution. PbI2 (3.7 mg, 0.008 mmol) and CH3NH3I (3.8 mg, 

0. 024 mmol) were dissolved in a mixture of acetonitrile (20 mL) and DMF (200 µL). 

Solutions Br and I were mixed in different proportions or relative halide loadings to a total 

volume of 4 mL, followed by the rapid addition of toluene (15 mL) while stirring in air. 



www.manaraa.com

15 

 

After 24 h stirring at R.T., solids were isolated by centrifugation (10 min at 4000 rpm). The 

solids were washed once by dissolution in toluene (5 mL) and re-centrifugation. Low-

dimensional (nano) CH3NH3Pb(BrxI1-x)3. Br Solution. PbBr2 (2.9 mg, 0.008 mmol), 

CH3NH3Br (1.3 mg, 0.012 mmol) and CH3(CH2)7NH3Br (2.5 mg, 0.012 mmol) were 

dissolved in a mixture of acetonitrile (20 mL) and DMF (0.2 mL). I Solution. PbI2 (3.7 mg, 

0.008 mmol), CH3NH3I (1.9 mg, 0.012 mmol) and CH3(CH2)7NH3I (3.1 mg, 0.012 mmol) 

were dissolved in a mixture of acetonitrile (20 mL) and DMF (200 µL). After 24 h stirring 

at room temperature (R.T., 294 K), solids were isolated and purified as specified above for 

the bulk samples. Dry samples were stored in glovebox (O2 level = 0.1 ppm; H2O level= 

0.1 ppm). 

Structural Characterization. Powder X-Ray Diffraction (XRD). XRD data were 

measured on Rigaku Ultima IV (40 kV, 44 mA) using Cu Kα radiation. Samples were drop 

casted from toluene onto a background-less quartz sample holder in air. XRD was collected 

on fresh samples due to the sensitivity of perovskites against moisture. Usually the 

synthesis and characterization occur at the same day. Transmission Electron Microscopy 

(TEM). TEM was conducted using a FEI Technai G2 F20 field emission TEM operating at 

up to 200 kV with a point-to-point resolution of less than 0.25 nm and a line-to-line 

resolution of less than 0.10 nm. Samples were prepared by placing 2 or 3 drops of dilute 

toluene solutions onto carbon-coated copper grids. Size and Morphology Analysis. Particle 

dimensions were measured manually or with ImageJ or both. Typically, >100 particles 

were counted in each case. Uncertainties in all measurements are reported as standard 

deviations. 

Optical Characterization. Optical Extinction. Optical Extinction (absorption plus 

scattering) spectra in solution phase were measured with a photodiode-array Agilent 8453 

UV/Vis spectrophotometer. Solvent absorption was recorded and subtracted from all 
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spectra. Diffuse Reflectance. Diffuse reflectance spectra of solid films were measured with 

a SL1 Tungsten Halogen lamp (vis-IR), a SL3 Deuterium Lamp (UV), and a BLACK-

Comet C-SR-100 Spectrometer. Samples were prepared by drop-casting toluene solutions 

onto a glass slide. Photoluminescence (PL). Steady-State PL Measurements. Steady-state 

PL spectra were measured with a Horiba-Jobin Yvon Nanolog scanning spectrofluorometer 

equipped with a photomultiplier detector. Relative PL quantum yields (QYs) were 

measured following literature procedures, using either Rhodamine 590 or Rhodamine 640 

dye as standard.  Absorption and PL emission spectra were measured as triplicates and the 

average QYs recorded. 

Results and Discussion 

General Synthesis and Size Control. We prepare polycrystalline (bulk) organolead 

halide perovskites by dissolving PbX2 (a in Scheme 1) and CH3NH3X (b) precursors (X = 

I, Br or Cl) in a polar solvent such as dimethyl formamide (DMF,  = 38.25) or acetonitrile 

( = 36.64) or both, followed by quick injection of this mixed precursor solution into a less 

polar solvent such as toluene ( = 2.379).59 DMF as the precursor solvent is initially 

investigated due to its good solubility; however, only the series of CH3NH3PbClxBr3-x 

crushes out in toluene whereas the series of CH3NH3PbBrxI3-x precursors forms some 

amorphous loosely held aggregates. Organometal perovskites have limited solubility in 

acetonitrile, and previously it has been used for synthesizing CH3NH3PbI3 nanowires by 

our group. In the case of CH3NH3PbBrxI3-x, when an acetonitrile and DMF co-solvent is 

used, perovskite crystals precipitate in toluene. It is worth mentioning the lead perovskites 

are quite stable in dry air, usually lasting one week before decomposition. But to make sure 

the samples remain as perovskite structures, we synthesize and characterize the samples on 

the same day. 
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To grow perovskite nanoparticles, CH3NH3X is equally replaced by a second, larger 

alkyl ammonium halide such as n-C8H17NH3X (c = b, Scheme 1), which allows decreasing 

the particle size from bulk to nano. The large n-C8H17NH3
+ (octyl) cation introduced in this 

way does not fit within the perovskite lattice, thus acting as a crystal-size limiting, surface-

generating agent.29 Nanoparticles of organometal halide perovskites thus produced likely 

contain methyl ammonium cations within their inorganic core, and a smaller amount of 

octyl ammonium groups on their particle surface (z << 1, Scheme 1). 

Scheme 1. Synthesis of mixed-halide organolead perovskites of different dimensionality 

(bulk vs. nano). 

 

Composition Control and Excess Precursors. To systematically synthesize mixed-halide 

(Br-I or Cl-Br) perovskites, we kept all conditions the same (see Experimental), including 

the precursors, solvents, total ion concentrations, and injection rate. In the case of Cl-Br 

perovskites, we use equimolar amounts of ammonium and lead halides (b + c = a, Scheme 

1). In the particular case of Br-I perovskites, the PbI2 precursor fails to completely dissolve 

in the co-solvent unless an excess of ammonium halide precursors is present (b + c = 3a, 

Scheme 1); having some excess ammonium halides also prevents the formation of 

crystalline byproducts and impurities. However, a very large excess of ammonium halides 

irreversibly affects the optical properties of the resulting perovskites, as discussed below. 

Structural Analysis. Powder X-ray diffraction (XRD) shows that each of the bulk and nano 

mixed-halide perovskite samples contains a set of crystalline peaks (Figure 1 and Figure 

S1-S4). The diffraction peaks gradually shift from CH3NH3PbCl3, to CH3NH3PbBr3, to 

ay PbX2 + a(1- y) PbX'2 + by CH3NH3X + b(1- y) CH3NH3X' +

cy (n-C8H17NH3X) + c(1- y) (n-C8H17NH3X')
(1) CH3CN and/or DMF

(2) Toluene

(CH3NH3)1- z(n-C8H17NH3)zPb(XyX'1- y)3

Bulk: a = 1; b = 1, 3; c = 0; z = 0; 0 ≤ y ≤ 1

Nano: a = 1; b = 0.5, 1.5; c = 0.5, 1.5; 0 < z <<1; 0 ≤ y ≤ 1
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CH3NH3PbI3 as the synthetic loading of less electronegative halide is increased, indicating 

some degree of solid solution. As noted previously, perovskite nanocrystals show a 

significant degree of preferred orientation, specifically along the <110> for CH3NH3PbI3 

and <001> for other mixed-halide perovskites (Figure 1b). In addition, CH3NH3PbCl3 

nanocrystals display some diffraction peaks outside of the reported (standard) perovskite 

pattern. A plot of cubic (or pseudocubic in the case of X = I) lattice parameter a, determined 

experimentally from the powder XRD data, against synthetic halide loading reveals a nearly 

linear relationship for the Cl-Br series, but significant bowing behavior for the Br-I series 

(Figure 1c). The curvature of the Br-I plot strongly indicates the favorable formation of Br-

rich (I-poor) perovskite phases (Figure 1c).60 

 

Figure 1. Powder XRD of polycrystalline (bulk) (a) and low-dimensional (nano) (b) mixed 

halide perovskites. The red, green and purple dashed lines correspond to the strongest, 
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(110) and (001) diffraction peaks in the standard patterns of iodide, bromide and chloride 

perovskites. (c) Lattice parameter a as a function of synthetic halide loading.  

To account for the linear (Cl-Br) vs. bowing (Br-I) behavior observed in the 

loading-dependent lattice parameter plots mentioned above, we consider Hume-Rothery 

rules.61 According to these rules, substitutional solid solutions form when (1) two 

compounds share similar crystal structures, (2) their ions have similar charge and 

electronegativity and (3) the radius difference between them is less than 15%. The 

organolead bromide and chloride perovskites share similar cubic crystal structures, while 

the iodide perovskite has a tetragonal structure (Figure 2).62 The elemental 

electronegativities (P) and monoanionic radii between halide pairs are well under 15% for 

the Cl-Br and Br-I systems (but well over for the Cl-I system, which is of technical 

importance for solar cell development.63 but was not explored here) (Table 1). Based on 

these rules, binary solid solution is feasible across the whole composition range for 

chloride-bromide (Cl-Br) perovskites, is somewhat limited due to the different parent 

crystal structures for bromide-iodide (Br-I) perovskites, and is likely difficult for the 

chloride-iodide (Cl-I) perovskites (Figure 2 and Table 1).64 We also assess the relative 

stabilities of different halide perovskites based on lattice energies (UL),65, 66 which show the 

bromide is ca. 130 kJ/mol more thermodynamically stable than the iodide according to 

UL(Table 2). This may also throw light upon the Br-preferred tendency in Br-I perovskite 

series. 
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Figure 2. (a) Tetragonal unit cell of the organolead iodide perovskite CH3NH3PbI3. (b) 

Octahedral hexahalolead(II) coordination geometry of organolead halide perovskites. 

Cubic unit cells of organolead (c) bromide CH3NH3PbBr3 and (d) chloride CH3NH3PbCl3 

perovskites. 

Table 1. Structural parameters of CH3NH3PbX3 perovskites. 

X P
X rX- 

(pm) 

ΔrCl 

(%)a 

ΔrBr 

(%)b 

a(Å) ΔaCl 

(%)d 

ΔaBr 

(%)e 

UL 

(kJ/mol) 

Cl 2.66 181 0 -7.2 5.6694 0 -4.5 -2464 

Br 2.96 195 7.7 0 5.9345 4.7 0 -2374 

I 3.16 216 19 11 6.3115, 

6.3161c 

11 6.4 -2244 

aRadius mismatch ΔrCl = 100  [(rX- – rCl-)/rCl-]. bRadius mismatch ΔrBr = 100  

[(rX- – rBr-)/rBr-]. cTetragonal system (a, c).d Lattice mismatch (Δl) = 100  [(ax – 

aCl)/aCl]. eLattice mismatch (Δl) = 100  [(ax – aBr)/aBr]. 

 

Except the differences in crystal structures and ionic radii, precursor reactivities and 

ease of forming solid solutions may also account for the non-linear behaviors. CH3NH3X 

salts dissociate differently in DMF depending on the specific halide (Scheme 2). For iodide, 

the preferred products are CH3NH3
+ and I-, the conjugate base of HI, which is a strong acid 

in DMF and leads to a large conductivity (Scheme 2a, Figure 3 when [PbX2]T = 0). For 
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bromide, and even more for chloride, the preferred products are CH3NH2 along with HBr 

or HCl, respectively, both of which are weaker acids in DMF and leads to a smaller 

conductivity (Scheme 2b, Figure 3 when [PbX2]T = 0).67 Thus, CH3NH3I is expected to be 

the most reactive ammonium halide precursor in DMF, generating free and readily 

available I- needed for perovskite formation that should be easily precipitated upon addition 

of a nonpolar solvent such as toluene. 

Scheme 2. Pathways of CH3NH3X dissociation in DMF. 

 

To probe PbX2 precursor reactivity, we measured their specific conductivities (κ) 

in DMF with both the presence and absence of a set amount of the corresponding CH3NH3X 

(Figure 3). As expected in pure DMF, the conductivity increases linearly with PbX2 

concentration. A steeper increase for the iodide case suggests that dissociation is slightly 

higher for PbI2 than for PbBr2 and PbCl2. In contrast, with the presence of 50 mM 

CH3NH3X in DMF, the conductivity actually decreases upon addition of PbI2, slowly 

increases upon addition of PbBr2, and more rapidly increases upon addition of PbCl2. 

Because conductivity is proportional to the number of ions in solution, this data strongly 

suggests that PbI2 and CH3NH3I interact most strongly, likely forming various PbIn
2-n 

complexes that result in fewer ions in solution and a lower conductivity.68-72 Thus, while 

CH3NH3I produces the most ions in DMF, these strongly interact with PbI2 to form soluble, 

less ionic species that stabilize the precursors in solution and lead to the inability of PbI2 to 

precipitate out of DMF, especially when high concentrations are used. 

 

 

(a
)

(b) CH3NH2 + HX

CH3NH3
+ + X-

CH3NH3X DMF

Scheme 1.
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Figure 3. Specific conductivity (κ) vs. PbX2 concentration with (solid) or without 

(hollow) 50 mM CH3NH3X. 

Further structural analysis of the low dimensional mixed-halide perovskites by 

transmission electron microscopy (TEM) reveals that these samples are primarily made of 

dot-shaped particles with an average size of 7-10 nm (Figure 4). The Br-rich (≥ 75% Br-

loading) perovskites also contain a small, minor morphology, nanosheets, which make up 

ca. 10-20% of particles in these samples (Figure S5-S7). As previously reported by our 

group, perovskite nanosheets are unstable under the TEM electron beam. The presence of 

nanosheets is a second contributing factor for the preferred orientation behavior observed 

by powder XRD for perovskite nanocrystals. 
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Figure 4. Representative TEM images and particle size histograms of mixed-halide 

organolead halide perovskite nanocrystals.  

Optical Properties. As observed for the powder XRD patterns (above), the optical 

absorption edges of the mixed-halide organometal perovskites gradually shift from 400 nm 

to 760 nm on going from CH3NH3PbCl3, to CH3NH3PbBr3, to CH3NH3PbI3, confirming 

that the bandgaps of these materials are compositionally-tunable (Figures 5 and 6).73,74 
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Under ambient light, the sample colors progressively change from milky white to dark 

brown as the synthetic loading of the less electronegative halide is increased. 

 

Figure 5. Ensemble optical properties of polycrystalline (bulk) organometal mixed-halide 

perovskites CH3NH3PbX3 (X=Cl, Br, I): (a) Samples under UV (top panel) and ambient 

light (second panel); (b) emission spectra (λexc = 300 nm for CH3NH3Pb(Cl/Br)3, 430 nm 

for CH3NH3Pb(Br/I)3); (c) diffuse reflectance spectra; (d) PL maxima and absorption edge 

as a function of halide loading.  



www.manaraa.com

25 

 

 

Figure 6. Ensemble optical properties of low-dimensional (nano) organometal mixed-

halide perovskites CH3NH3PbX3 (X=Cl, Br, I): (a) Samples in toluene under UV lamp (top 

panel) and ambient light (second panel); (b) emission spectra (λexc = 300 nm for 

CH3NH3Pb(Cl/Br)3, 430 nm for CH3NH3Pb(Br/I)3); (c) absorption spectra in toluene; (d) 

PL maxima and absorption edge as a function of halide loading. 

All of the mixed-halide perovskites emit light under UV lamp irradiation. The low-

dimensional (nanosized) mixed-halide perovskites are generally stronger 

photoluminescence (PL) emitters, with the pure CH3NH3PbBr3 perovskite sample having 

the highest PL quantum yield (QY) of 44% (Table S2). The PL emission spectra of mixed-

halide perovskites range across the whole visible spectral region from 400 nm to 760 nm 

(Figures 4 and 5). A plot of absorption edge (for bulk samples) or first excitonic peaks (for 
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nano samples) against synthetic halide loading reveals (in both types of samples) a nearly 

linear relationship for the Cl-Br series, but significant bowing behavior for the Br-I series 

(Figures 2c and 3c). The curvature of the Br-I plot strongly indicates the favorable 

formation of Br-rich (I-poor) perovskite phases, in agreement with our XRD observations 

above.  

Conclusion 

In summary, we combine composition-control with dimensionality-control of 

organometal halide perovskite crystals by tuning halide-incorporation and exploiting bulky 

alkylammonium cations as capping ligands. We demonstrate a systematic synthesis of all 

the series of mixed halide perovskite polycrystals and their low dimensional analogues. 

Both structural and optical properties exhibit a non-linear relationship between synthetic 

loadings vs. compositions, which to our knowledge has not been reported yet. We speculate 

this non-linear behavior is caused by the differences in structure phases, halide radii, 

precursor reactivities, lattice entropies and precursor solubilities. Also, by optimizing 

synthetic conditions, we are able to inhibit the appearance of a reversible photoinduced PL 

peak derived from surface traps. 
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Supporting Information  

Table S1. Polycrystalline mixed halide perovskites. 

Loading a (nm) XRD size (nm) Abs. edge (nm) PL max (nm) 

100% I      0% Br 0.628 > 100 765 763 

75% I    25% Br 0.612 58 647 663 

50% I    50% Br 0.594 > 100 532 576 

25% I    75% Br 0.594 > 100 523 530 

0% I  100% Br 0.591 > 100 527 519 

100%Br    0% Cl 0.598 72 526 527 

75%Br  25% Cl 0.588 > 100 488 498 

50%Br  50% Cl 0.581 > 100 466 466 

25%Br  75% Cl 0.579 > 100 430 438 

0%Br 100%Cl 0.572 > 100 399 412 

 

 

 

 

 

Table S2. Low dimensional mixed halide perovskites.  

Loading a (nm) XRD size 

(nm) 

TEM size (nm) Abs. edge 

(nm) 

PL max 

(nm) 

Quantum 

Yield (%) 

100% I      0% Br 0.634 > 100 7 ± 2 774 745 1.5 

  75% I    25% Br 0.608 > 100 4 ± 1 630 644 1.3 

  50% I    50% Br 0.599 > 100 8 ± 3 560 540 0.02 

  25% I    75% Br 0.591 > 100 15 ± 6 529 515 0.2 

    0% I  100% Br 0.587 7 8 ± 2 527 506 44 

100%Br    0% Cl 0.596 86 164 ± 170 (sheet) 515 518 5 

  75%Br  25% Cl 0.582 18 20 ± 9 (plate) 486 497 3 

  50%Br  50% Cl 0.579 40 10 ± 3 449 459 3 

  25%Br  75% Cl 0.569 10 10 ± 5 412 423 0.3 

    0%Br 100%Cl 0.567 14 9 ± 3 387 398 0.03 
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Figure S1. Powder XRD of experimental polycrystalline mixed Br-I perovskites 

CH3NH3Pb(BrxI1-x)3. The standard XRD patterns of cubic CH3NH3PbBr3 (bottom) and 

tetragonal CH3NH3PbI3 (top) are also shown. 

 
Figure S2. Powder XRD of experimental polycrystalline mixed Cl-Br perovskites 

CH3NH3Pb(ClxBr1-x)3. The standard XRD patterns of cubic CH3NH3PbCl3 (top) and cubic 

CH3NH3PbBr3 (bottom) are also shown. 
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Figure S3. Powder XRD of experimental low dimensional mixed Br-I perovskites 

CH3NH3Pb(BrxI1-x)3. The standard XRD patterns of cubic CH3NH3PbBr3 (top) and 

tetragonal CH3NH3PbI3 (bottom) are also shown.  

 
Figure S4. Powder XRD of experimental low dimensional mixed Cl-Br perovskites 

CH3NH3Pb(ClxBr1-x)3. The standard XRD patterns of cubic CH3NH3PbCl3 (top) and cubic 

CH3NH3PbBr3 (bottom) are also shown. 
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Figure S5. Typical TEM images of low dimensional mixed Br-I perovskites 

CH3NH3Pb(BrxI1-x)3 and their size distribution histograms obtained from TEM data. An 

HRTEM image of 25% I 75% Br perovskite is also shown. 

 

  
Figure S6. Typical TEM images of low dimensional mixed Cl-Br perovskites 

CH3NH3Pb(ClxBr1-x)3 and their size distribution histograms obtained from TEM data. 

HRTEM images of 0%Br and 25%Br are also shown.  
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Figure S7. A typical STEM image of low dimensional 50%Br 50%Cl perovskites and their 

halide composition at different regions obtained from EDX data.  
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CHAPTER 3.    ALIOVALENT DOPING OF LEAD HALIDE PEROVSKITES: 

EXPLORING THE CH3NH3PbI3–(CH3NH3)3Sb2I9 INTERFACE TOWARD ALL 

INORGANIC PEROVSKITES 

 Feng Zhu, Noreen E. Gentry, Long Men, Miles A. White, Javier Vela 

Abstract 

Lead halide perovskites have attracted much attention in the past few years due to 

their outstanding performance in photovoltaic devices. Nanoscale versions of these 

materials are also good candidates for light emitting devices. In this work, we synthesize 

perovskite nanocrystals using a surfactant-free method by introducing antimony iodide in 

the perovskite precursor. Surface-bound (CH3)3Sb2I9 layers restrict the growth of 

CH3NH3PbI3, resulting in CH3NH3PbI3 nanocrystals of about 50 nm. Compared to the bulk 

perovskites, the nanocrystals show stronger photoluminescence. As there are no long-chain 

organic ligands on the surface which will inhibit the charge (electron and hole) transport, 

these surfactant-free nanocrystals may have better performance in the photo-electronic 

devices. 

Introduction 

Organometal halide perovskites of general composition APbX3 (A = CH3NH3
+, 

H2N-CH=NH2
+, Cs+; X = I-, Br-, Cl-) are attractive semiconducting materials due to their 

outstanding photovoltaic performance in both planar heterojunction and mesoporous solar 

cells.1-4 Specific device performance heavily depends on perovskite composition, 

crystallinity, and morphology.5,6 Substitution with a variety of small organic and inorganic 

cations (A, above), main group metals (Sn or Ge, in lieau of Pb), and halides (X) results in 

‘hybrid’ perovskites with—in some cases—greatly enhanced performance.7-12 Films made 

of well-crystallized perovskites display wide light absorption, high absorption coefficients, 

and long electron-hole carrier diffusion lengths.13 Optimization of these properties has led 

to an increase in power conversion efficiency (PCE) from 3% to 22.1% in recent years.14 



www.manaraa.com

42 

 

Large crystallites present a small band gap and long lifetime, which correlate to a 

small recombination coefficient and high conversion efficiency.15 However, small 

CH3NH3PbX3 nanocrystals show excellent photoluminescence quantum yields of up to 

70% at room temperature and are good candidates for light-emitting devices.16-19 Most of 

these fluorescent nanocrystals are prepared using organic ligands to control the crystal 

morphology, passivate the halide-rich surface, and thus improve the PL intensity.20 Our 

group employed n-octylammonium halides to partially replace CH3NH3
+, and terminate the 

crystal growth in the synthesis of CH3NH3PbX3 nanorods and nanoplates or sheets. 

CH3NH3PbX3 nanoparticles display relatively stable and shape correlated 

photoluminescence at the single particle level.21-24 An adverse effect of organic ligands is 

they form an insulated layer and restrict the carrier transport.25 There are only a few papers 

reporting methods to synthesize nano-sized perovskites without organic ligands, including 

using solvents with different polarities,26 employing lead halide and other Pb-containing 

precursors as self-template,27-29 or creating an organic matrix to control the particle size.30, 

31 CH3NH3PbI3 nanowires can be synthesized in a low temperature, solution processed 

crystallization, using a simple slip-coating method.32 

Inorganic ligands, such as metal chalcogenide complexes, chalcogenide ions, and 

halide or pseudohalides, are always used to replace the organic ligands on the 

semiconductor surface. These all-inorganic nanocrystal films show improved charge 

transport capability compared with the organics capped ones.33-39 As expected, the 

photovoltaic devices show improved conversion efficiency.40, 41 Photovoltaic devices using 

inorganic passivated lead chalcogenide nanocrystals also have better air stability and retain 

performance characteristics for long time.42,43 Moreover, the inorganic-capped crystals 

perform well in other fields, including water oxidation, photoluminescence, and 

electroncatalysis.44-46 II–VI, III–V, and IV–VI,  semiconductor nanocrystals capped with 



www.manaraa.com

43 

 

lead halide perovskites (CH3NH3PbX3, where X = I, Br) and other metal halide complexes 

(MXn, where M = Pb, Cd, In, Zn, Fe, Bi, Sb) show high luminescence quantum efficiencies 

at different wavelengths.47 InP nanocrystals capped with chalcogenide complexes have 

relatively stable PL emission in elevated temperatures.48 

In this paper, we synthesize and characterize CH3NH3PbI3 nanocrystals, using 

organo-antimony halide as the capping agent instead of organic ligands.  (CH3NH3)3Sb2I9 

gives two modifications from the three-dimensional (3D) CH3NH3PbI3 perovskite 

structure: (1) two-dimensional (2D) corrugated layer of polyanions and (2) isolated 

bioctahedral M2X9
3- anion.49-55 By replacing Pb2+ with Sb3+ on the CH3NH3PbI3 surface, 

large 2D layers generate and terminate the organo-lead halide crystal growth. These 

nanocrystals show improved PL emission over the bulk material. 

Experimental 

Materials. Lead(II) iodide (99%), antimony(III) iodide (98%), methylamine 

solution (33 wt %), 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene) 

(72.3 mg, spiro-MeOTAD), lithium  bis(trifluoromethylsulphonyl)imide, and tris(2-(1H-

pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III) bis(trifluoromethylsulphonyl)imide were 

purchased from Sigma-Aldrich; hydroiodic acid (ACS, 55-58%) and oleic acid (tech., 90%) 

from Alfa-Aesar; acetonitrile (99.9%), and toluene (99.9%) from Fisher. All chemicals 

were used as received.  

Synthesis. Ammonium halides. Hydroiodic acid (10 mL, 0.075 mol) was added to 

a solution of excess amine (0.192 mol) in ethanol (100 mL) at 0 °C, and the mixture stirred 

for 2 h. The solution was concentrated under vacuum, and the resulting powder dried under 

dynamic vacuum at 60 °C for 12 h and recrystallized from ethanol. n-Octylammonium 

iodide (CH3(CH2)7NH3I) was washed repeatedly with ethyl ether and dried under dynamic 

vacuum. (CH3NH3)3Sb2I9. Solution A: SbI3 (5.0 mg, 0.01 mmol) and CH3NH3I (4.8 mg, 
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0.03 mmol) were dissolved in acetonitrile (20 mL). A fraction of this solution (4 mL) was 

dropped into toluene (15 mL) under stirring. The orange product was centrifuged without 

sonication and washed with toluene. Organic (C8) capping. Solution B: SbI3 (5.0 mg, 0.01 

mmol), CH3NH3I (2.4 mg, 0.015 mmol) and CH3(CH2)7NH3I (3.9 mg, 0.015 mmol) were 

dissolved in acetonitrile (20 mL). Octylammonium-capped (CH3NH3)3Sb2I9 nanocrystals 

were synthesized by a similar procedure to the one above. CH3NH3PbI3. Solution C: PbI2 

(9.2 mg, 0.02 mmol) and CH3NH3I (9.6 mg, 0.06 mmol) were dissolved in acetonitrile (40 

mL). Solution D: PbI2 (9.2 mg, 0.02 mmol), CH3NH3I (4.8 mg, 0.03 mmol) and 

CH3(CH2)7NH3I (7.8 mg, 0.03 mmol) were dissolved in acetonitrile (40 mL). Inorganic 

(Sb) capping. Different amounts of solution C were mixed with solution A (4 mL in total, 

0.002 mmol), and the mixture added into toluene (15 mL) under stirring. Combined organic 

and inorganic capping. Different amounts of solution D were mixed with solution A (4 

mL, 0.002 mmol), and the mixture added into toluene (15 mL). In all cases, samples were 

stirred for 6 h before isolating the product by centrifugation (10 min at 4,500 rpm), 

following by re-dispersion in toluene (5 mL). 

Structural Characterization. Powder X-ray diffraction (XRD) data were 

measured using Cu Kɑ radiation on Rigaku Ultima IV (40 kV, 44 mA). Samples were 

measured on a “background-less” quartz slide. Transmission electron microscopy (TEM) 

was conducted using a FEI Technai G2 F20 field emission TEM operating at up to 200 kV 

with a point-to-point resolution of less than 0.25 nm and a line-to-line resolution of less 

than 0.10 nm. Dilute sample solutions in toluene were dropped (2-3 drops) onto carbon-

coated copper grids. Elemental composition was assessed by energy-dispersive 

spectroscopy (EDS). 

Optical Characterization. Optical extinction (absorption plus scattering) spectra 

of solutions were measured with a photodiode-array Agilent 8453 UV/vis 
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spectrophotometer. Solvent absorption was recorded and subtracted from all spectra. 

Diffuse reflectance spectra of solid films were measured with a SL1 Tungsten Halogen 

lamp (vis-IR), a SL3 Deuterium Lamp (UV), and a BLACK-Comet C-SR-100 

Spectrometer. Samples were prepared by drop-casting toluene solutions onto glass. Steady-

state photoluminescence (PL) spectra were measured with a Horiba-Jobin Yvon Nanolog 

scanning spectrofluorometer equipped with a photomultiplier detector. Relative PL 

quantum yields (QYs) were measured against using Rhodamine 640 dye using standard 

procedures. 

Solar cell device fabrication. FTO glass cleaning. Substrates were cleaned with a 

2% solution of Hellmanex® cuvette cleaning detergent diluted in deionized water, rinsed 

with deionized water, acetone and ethanol, and dried with clean dry air. Oxygen plasma 

was then used to treat the substrate for 10 min.56 TiO2 block layer. The TiOx flat film 

precursor solution consists of 0.23 M titanium isopropoxide and 0.013 M HCl in 

isopropanol. FTO substrates were coated with a compact layer of TiO2 deposited by spin 

coating this TiOx solution at 2000 rpm for 60 s and consequently heating at 500 °C for 

30 min.57 TiO2 porous layer. A mesoporous TiO2 layer composed of 20 nm-sized particles 

was deposited by spin coating at 5000 rpm for 30 s using a commercial TiO2 paste (Dyesol 

18NRT, Dyesol) diluted in ethanol (2:7, weight ratio). After drying at 125 °C, the TiO2 

films were gradually heated to 500 °C, baked at this temperature for 15 min and cooled to 

room temperature. Prior to use, the films were re-dried at 500 °C for 30 min.58 Perovskite 

layer (two-step deposition). PbI2 (1 M) with varying molar ratios of SbI3 in DMF was spin 

coated onto the mesoporous TiO2 at 6500 rpm for 30 s and dried at 70 ˚C. PbI2 deposition 

repeated in order to ensure loading of the mesoporous structure. The perovskite layer was 

formed after drop casting CH3NH3I solution (0.2 mL, concentration?) in isopropanol (8 mg 

mL1?), waiting 20 s, and spin coating for 20 s at 4000 rpm. Substrates were dried at 70 ˚C. 
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Hole transport material (HTM) layer. Spiro-MeOTAD (72.3 mg), 4-tert-butylpyridine 

(28.8 μL), lithium bis(trifluoromethylsulphonyl)imide (17.5 μL of 520 mg/mL solution in 

acetonitrile) and tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III) 

bis(trifluoromethylsulphonyl)imide (29 μL of a 300 mg/mL solution in acetonitrile) were 

mixed with chlorobenzene (1 mL). The HTM was deposited by spin coating this solution 

at 4000 rpm for 30 s. Current density–voltage (I-V) characterization. One sun illumination 

was obtained using a light source (LS150 Abet Technologies) and calibrated with a 

reference crystalline Si solar cell. All the samples were measured under the same light 

intensity. The I-V curve was measured using a Keithley 2400 source-meter. 

Results and Discussion 

As highlighted in our original synthesis of lead perovskite nanocrystals,21 one way 

to prepare these materials is by exploiting solvent polarity differences. CH3NH3X and PbX2 

precursors dissolved in a polar solvent—such as acetonitrile—quickly react upon exposure 

to less polar solvents—such as toluene—to form CH3NH3PbX3 (X = I, Br, Cl) solids, which 

are easy to isolate by precipitation.23 Addition of a surface truncating agent that does not 

fit within their structure—such as a long chain ammonium halide21 or a long chain 

carboxylate—leads to size controlled perovskite nanoparticles capped and stabilized by 

surface-bound organic ligands. 

We have adapted this general method to the synthesis of (CH3NH3)3Sb2I9 (Scheme 

1). Addition of excess toluene to an acetonitrile solution of SbI3 and CH3NH3I causes the 

formation of an orange precipitate. Powder X-ray diffraction (XRD) of this solid shows 

that it contains crystalline (CH3NH3)3Sb2I9 in its trigonal phase (Figure 1), although the 

product has relatively intense (-111), (011), (-231), and (-131) peaks compared to the 

standard pattern. 
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Scheme 1. 

 

 

Figure 1. Powder XRD of (CH3NH3)3Sb2I9 prepared with and without different amounts 

of n-C8H17NH3I as a capping agent. The x, y and z labels show the relative molar loadings 

of SbI3, CH3NH3I and n-C8H17NH3I.  

CH3NH3PbX3 perovskites form a 3D structure of corner sharing hexahalolead(II) 

octahedra [PbX6
4-], and monovalent cations (A+) opposing each of the octahedral faces in 

12-fold cuboctahedral coordination. (Figure 1). There are two known structures for this 

compound, trigonal and hexagonal which contain isolated and face-sharing [PbX6
4-] 

octahedra, which both. The organo-antimony halide, (CH3NH3)3Sb2I9 forms 2D layers of 

polyanions in the crystal structure similar to the perovskite structure (Figure 1), with Sb 

also surrounded by 6 halide atoms. Since CH3NH3PbI3 and (CH3NH3)3Sb2I9 can generate 

(1) CH3CN

(2) Toluene

x SbI3 + y CH3NH3I+ z n-C8H17NH3I

(CH3NH3)3Sb2I9  (unbalanced)
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in the same solvent with a similar growth rate during precursor injection, layered 

(CH3NH3)3Sb2I9 may cover the CH3NH3PbI3 surface, leading to size-controlled crystals. 

 

Figure 2. Unit cells of CH3NH3PbI3 (left) and (CH3NH3)3Sb2I9 (right) and the layering 

patterns of each perovskite. Vacant octahedra are depicted in gray for the Sb perovskite. 

When the bulky n-C8H17NH3I ligand is introduced to partially replace CH3NH3I, 

XRD patterns show minor differences in either peak intensities or widths, indicating little 

change in morphology and size (Figure 2). Transmission Electron Microscopy (TEM) 

confirms this finding and shows the similar morphology of network between the system 

with and without n-C8H17NH3I (Figure 3). Absorption spectra measured from solution 

transmittance and powder diffuse reflectance show the absorption onset at about 640 nm 

(Figure 4). 

(CH3NH3)3Sb2I9 crystals remain relatively stable with dispersion in toluene, 

however the product is unstable if left stirring in the crude solution. During this 

decomposition, a significantly less yellow product replaces the orange crystals and can be 
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collected utilizing centrifuge. This decomposition gives a very broad XRD peak at about 

29° (Figure S2) which can be attributed to weak van der Waals force between the layers in 

(CH3NH3)3Sb2I9. 

 

Figure 3. TEM of (CH3NH3)3Sb2I9 prepared with different precursor ratios of SbI3 (x), 

CH3NH3I (y) and n-C8H17NH3I (z). 

 

Figure 4. Absorption spectra of (CH3NH3)3Sb2I9 measured from solution transmittance 

(red) and powder diffuse reflectance (black). 

To prepare the CH3NH3PbI3 perovskite, we repeated the procedure outlined above 

using PbI2.  SbI3 was introduced into the system in various ratios to terminate particle 

growth without binding long-chain organic ligands to the surface of the particles. The initial 

concentrations of metal halide and CH3NH3I were preserved (Scheme 2). XRD peaks of 
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the doped Sb-Pb perovskites maintain the same pattern as the pure CH3NH3PbI3 phase, even 

when the Sb3+ concentration is as high as 40% (x = 0.4) (Figure 5). No horizontal XRD 

peak shifts are observed in the Sb-Pb perovskite, either, suggesting the Sb does not fully 

incorporate into the crystal structure, but rather forms some sort of surface coating. The 

absence of XRD shifting can possibly be attributed to very thin layers of (CH3NH3)3Sb2I9 

covering the CH3NH3PbI3 surface while stirring, which cannot be detected by XRD. While 

the structure of the perovskites appears resistant to Sb3+ doping, an increase in the XRD 

peak width is observed, indicating a reduction in crystal size with the addition of Sb3+. 

CH3NH3PbI3 formed in solution without SbI3 (x = 0) has a relatively strong peaks of (002) 

and (004) compared to the standard powder XRD pattern; this is likely attributed to the 

preferred growth or packing orientation of the crystals. Products with Sb show consistent 

peak intensities compared to the synthesized standard, indicating the spherical morphology 

or isotropic packing of the crystals. 

Scheme 2. 

 

We further identify the hybrid crystal size using TEM. “Bulk” CH3NH3PbI3, made 

in the absence of SbI3 (x = 0), consists of relatively large 0.3-2 μm particles with cube-like 

or tetragonal morphology (Figure 6). In contrast, CH3NH3PbI3 produced with the addition 

of SbI3 consists of nanocrystals with an average diameter of 49 and 44nm for the 20% (x = 

0.2) and 40% Sb crystals, respectively (Table 1). High-resolution transmission electron 

microscopy (HR-TEM) of the 20% Sb-doped perovskite shows the presence of three 

prominent d-spacing values of 3.0, 3.2, and 3.5 Å. The 3.2 Å lattice plane can be readily 

assigned to the (220) plane of CH3NH3PbI3, while the 3.0 and 3.5 Å d-spacings correspond 

(1-x)  PbI2 + x SbI3 + 3 CH3NH3I

(1) CH3CN

(2) Toluene
product
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to the (20-2) and (201) planes of (CH3NH3)3Sb2I9, respectively (Table S1). Furthermore, 

the 40% Sb-doped products show layered materials surrounding the particles. 

 

Figure 5. XRD patterns for CH3NH3PbI3 prepared using different initial concentrations of 

PbI2 (0.435·(1-x) mM), SbI3 (0.435·x mM) and CH3NH3I (1.305 mM) in acetonitrile 

precursor solution and crashed with toluene according to Scheme 2. The standard XRD 

pattern reported for CH3NH3PbI3 I4cm and (CH3NH3)3Sb2I9 are shown for comparison. 

Elemental mapping and composition analysis of Sb-doped perovskites by energy 

dispersive X-ray spectroscopy (EDX) in Figure 7 confirmed the presence of all three Pb, 

Sb, and I elements in 20% and 40% Sb-doped samples. Pb-containing products appear to 

maintain separate particles, while Sb are distributed over a wide area, indicating that 

organo-antimony halide formed layered products is layered over the surface of the 

CH3NH3PbI3 particles. A line profile of the 20% and 40% doped samples (Figure 8) 

indicates a homogenous doping of the perovskites.  Following a cross section, each 

elemental count appears to remain relatively consistent. 
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Figure 6. Representative TEM images (a) for CH3NH3PbI3 crystals with 0, 20, and 40% 

Sb doping. The (010) facet (b) shows the lattice spacing of the 20% Sb-doped crystals on 

the (20-2) and (201) planes. 

 

Figure 7. Elemental mapping of 20% (top) and 40% (bottom) Sb-doped perovskites by 

energy dispersive X-ray spectroscopy (EDX). 

An interesting characteristic of organometal perovskite semiconductors is they can 

be highly emissive and are good fluorophores. Because structural defects are known to play 

a crucial role in perovskite’s optical properties, non-radiative recombination could be 

attributed to surface defects. In agreement with this idea, nanostructured organolead halide 
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perovskites capped with organic ligands exhibit high PL quantum yields and have been 

used in light-emitting devices. Organo-antimony halide covered on the surface may also 

inhibit the non-radiative recombination path, enhancing the emission intensity. 

 

Figure 8. Line scanning analysis of perovskites with different amount of Sb. An overall 

homogenous doping across the plane is observed. 

The optical properties of the inorganic capped perovskites were tested to explore 

this idea. The solution-phase optical absorption, solid-film diffuse reflectance, and 

photoluminescence spectra of several Sb-doped CH3NH3PbI3 perovskites are shown in 

Figure 9. The solution-phase spectra show weak excitonic peaks in Sb-doped CH3NH3PbI3 

at about 735 nm. Due to partial or incomplete solubility (particularly for large and bulk 

particles), solution-phase absorption spectra of these materials show a significant amount 

of scattering at photon energies below their band gap (Figures 9a).  The diffuse reflectance 

spectra (Figures 9b) are particularly helpful in determining the absorption onsets of these 

materials. As expected, bulk CH3NH3PbI3shows absorption onset of about 800 nm (Figures 

9b) while the absorption edge is blue shifted for 20% Sb-doped sample and red shifted in 

40% doped sample (Table 1). The specific apparent band gaps, measured from the 
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absorption data using Tauc plots ((αhν)2 vs. hν for a direct band-gap semiconductor, where 

A = absorption coefficient, hν = energy of light) were the following: 1.56 eV for bulk 

CH3NH3PbI3, 1.58 eV for 20% Sb- CH3NH3PbI3, and 1.57 eV for 40% Sb- CH3NH3PbI3. 

The PL peak (Figure 9c) also experiences a significant blue shift with the addition of 20% 

and 40% Sb doping.  Bulk CH3NH3PbI3 have very weak PL emission and exhibit a PL peak 

at 778 nm while 20% and 40% doped crystals have stronger emission peaks at 745 nm and 

757 nm respectively.  CH3NH3PbI3 nanocrystals made in the presence of SbI3 in precursor 

tend to have higher PL QYs. 

 

Figure 9. Solution-phase optical density (O.D. includes absorption and scattering) (a), 

solid-film diffuse reflectance (b), and relative photoluminescence spectra (normalized by 

each sample's O.D. at exc = 450 nm) (c) of Sb-Pb perovskites with different Sb ratio. 
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To further study the effects of ligands and morphology control, n-C8H17NH3I and 

SbI3 are both introduced for the preparation CH3NH3PbI3, as shown in Scheme 3. Similar 

to the doping procedure outlined above, CH3NH3I and n-C8H17NH3I are both added in 

excess to the precursors, while PbI2 and SbI3 ratios are changed coordinately to maintain a 

constant molar ratio to the other reagents. XRD patterns of products prepared from different 

ratio of SbI3 match the CH3NH3PbI3 peaks, without any peaks from organo-Sb halide phase 

present, as shown in Figure 10. XRD peaks also indicate SbI3 in the precursor may weaken 

the crystal growth orientation, because the samples with SbI3 have more intense XRD peaks 

beyond 30 degrees than the perovskite without SbI3, which correlates stronger to the 

standard pattern. 

Scheme 3. 

 

 

Figure 10. XRD patterns for CH3NH3PbI3 prepared using different initial concentrations 

of PbI2 (0.435·(1-x) mM), SbI3 (0.435·x mM) in presence of CH3NH3I and n-C8H17NH3I 

according to Scheme 3. 

(1-x)  PbI2 + x SbI3 + 1.5 CH3NH3I  + 1.5 n-C8H17NH3I

(1) CH3CN

(2) Toluene
product
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TEM images (Figure 11) are consistent with our previous publication and show the 

product with only n-C8H17NH3I (x= 0, 0% Sb) forms primarily nanowires and a small 

distribution of nanocrystals (Figure 11). The addition of SbI3 in the precursor solution 

containing n-C8H17NH3I adjusts preferred morphology with various doping levels. The 

20% Sb perovskite becomes predominantly nanocrystals with a few short rods still present, 

while the 40% Sb perovskite produces only nanocrystals without nanorods or nanowires 

apparent. In the presence of n-C8H17NH3I, nanoparticles are produced with 0%, 20% and 

40% Sb doping with diameters of 17, 28, and 21nm respectively (Table 1).   

 

Figure 11. Representative TEM images and size histograms for CH3NH3PbI3 crystals with 

different ratio of Sb doping in presence of n-C8H17NH3I. 

The optical characterizations of these perovskites is shown in Figure 12.  The 

solution phase absorption spectra (Figure 12a) shows a significant change for the 40% 

perovskite, which is replicated with a slight blue shift for both doped perovskites during 

diffuse reflectance (Figure 12b). Diffuse reflectance spectra show an absorption onset at 

about 785 nm, with the bandgap of 1.57 eV for the 0% and 20% doped perovskites, while 

the 40% has a 1.59 eV bandgap. PL emission shows a little red shift in the products with 

SbI3. Contrary to the Sb-doped perovskites prepared without the bulky organic ligand, the 
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PL emission intensity decreases significantly with increased SbI3 doping in presence of n-

C8H17NH3I (Figure 12). 

 

Figure 12. Solution-phase optical density (O.D. includes absorption and scattering) (a), 

solid-film diffuse reflectance (b), and relative photoluminescence spectra (normalized by 

each sample's O.D. at exc = 520 nm) (c) of Sb-Pb perovskites with different Sb ratio in 

presence of n-C8H17NH3I. 

A single-junction solar cell was assembled, as outlined in the Experimental section, 

to distinguish the effects of Sb in devices. We dope SbI3 (molar ratios of Sb to Pb 1%, 2%, 

5%) into perovskite precursor to fabricate solar cell devices using a two-step deposition. 

The highest efficiency of single-junction solar cells is between 13 and 17%.59, 60 As stated 

before, the Pb and Sb-Pb perovskites were spin coated from DMF solutions into the 

mesoporous TiO2 layer. When the lead source is either PbI2 or PbCl2, after SbI3 doping, the 

device fill factor will decrease when the SbI3 amount is 1%. Further increasing SbI3 will 
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decrease JSC and VOC. Films constructed using PbI2 or PbCl2 have higher conversion 

efficiency than the doped ones as shown in Figure S4. 

 

Conclusion 

In this manuscript, we successfully synthesize CH3NH3PbI3 nanocrystals 

employing a surfactant-free method.  Using a dissolve and polarity crash-out crystallization 

method, we produced (CH3)3Sb2I9 nanocrystals that remain stable in toluene solution.  By 

introducing SbI3 to partially replace PbI2 in the precursor lead perovskite solution, layered 

(CH3)3Sb2I9 covers the surface of CH3NH3PbI3 and terminates crystal growth during the 

crash-out process. The hybrid nanocrystals synthesized with (CH3)3Sb2I9 show higher PL 

quantum yield than bulk CH3NH3PbI3. Nanocrystals prepared with only n-octylammonium 

have a higher PL intensity than those prepared in the presence of both n-octylammonium 

and (CH3)3Sb2I9. Nanocrystals prepared using (CH3)3Sb2I9 may be idealized in the photo-

electronic devices, as no organic ligands are present on the perovskite surface that inhibit 

charge transport using the Sb film. 
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Supporting Information 

 

Figure S1. Comparison of two (CH3NH3)3Sb2I3 structures: P3̅m1 (trigonal) and P63/mmc 

(hexagonal).  
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Figure S2. Powder XRD pattern of yellow product generated by stirring (CH3NH3)3Sb2I3 

in crude solution. 

Table S1. Lattice spacing in (CH3)3Sb2I9. 

h k l d (Å) 

2 0 -2 3.0514 

2 0 1 3.5178 

Table S2. Bandgap, PL peak and quantum yield of nanocrystals prepared with (CH3)3Sb2I9 

capping. 

Sb ratio Bandgap (eV) PL peak (nm) QY (%) 

0%  1.56 778 - 

10%  1.56 750 0.15 

20% 1.58 745 0.1 

30% 1.61 748 0.08 

40% 1.57 757 0.18 
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Figure S3. Solution-phase optical density (O.D. includes absorption and scattering) (a), 

solid-film diffuse reflectance (b), and relative photoluminescence spectra (normalized by 

each sample's O.D. at exc = 520 nm) (c) of Sb-Pb perovskites with different Sb ratio in 

presence of n-C8H17NH3I. 

Table S3. Bandgap, PL peak and quantum yield of nanocrystals prepared with both 

(CH3)3Sb2I9 and n-C8H17NH3I capping. 

Sb ratio Bandgap (eV) PL peak (nm) QY(%) 

0%  1.57 757 4.0 

10%  1.56 764 2.1 

20% 1.57 767 1.1 

30% 1.57 768 0.8 

40% 1.59 765 0.2 
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Figure S4. I-V curves of perovskite solar cells with different molar ratio of Sb doping: (a) 

0% Sb, (b) 1% Sb, (c) 2% Sb, (d) 5% Sb. 
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CHAPTER 4.    LEAD-FREE GERMANIUM PEROVSKITES: SOFT 

CHEMISTRY, DIMENSIONALITY CONTROL, AND MANGANESE-DOPING 

Long Men, Bryan A. Rosales, Noreen E. Gentry, Javier Vela 

Abstract 

Organometal halide perovskites have drawn enormous interest recently as 

promising photovoltaic and optoelectronic materials along with their unique and 

remarkable properties; however, lead is a heavy metal element and its potential toxicity 

raises concerns for environmental compatibility. To address this problem, we developed a 

synthetic route to bulk cesium germanium triiodide (CsGeI3) and their nanocrystals. With 

a direct bandgap of 1.6 eV and a corner-sharing octahedral network crystal structure that 

are comparable to CH3NH3PbI3, CsGeI3 is potentially promising for photovoltaic 

applications. The structural and optical properties were investigated by transmission 

electron microscopy (TEM), X-ray diffraction (XRD) and diffuse reflectance. To 

manipulate the optoelectronic properties, we doped high-spin, divalent manganese ions 

(Mn2+) into the octahedral Ge2+ sites of CsGeI3. Electron paramagnetic resonance (EPR) 

helps us better understand the local ion environment and composition of both CsGeI3 and 

its doped analogue (CsGe1-xMnxI3). Our results expand the lead-free halide perovskite 

family and set the stage for their application beyond photovoltaics to spintronics and 

magnetic data storage. 

Introduction 

Lead halide perovskites have garnered great interest due to their excellent 

optoelectronic properties. Solar energy conversion efficiency of perovskite solar cells has 

surged from 3.8% to 22.1% within eight years,1, 2 by virtue of their panchromatic light 

absorption, long carrier diffusion length and defect-tolerant behavior.3-8 All of these factors 

make perovskites ideal candidates as light harvesters in next generation solar cells. Also, 

due to their long carrier lifetime, tunable emission and high quantum yield observed in 
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nanocrystals, the rise of perovskite nanocrystals as chromophores rejuvenates interest in 

the development of light-emitting materials9-13 and low-threshold lasers.14-17  

However, the element lead is a toxic, heavy metal that attacks the nervous and 

reproductive systems in humans and also raises concerns for environmental 

compatibility.18-20 There is a need to reduce our dependency on lead by pursuing lead-free 

perovskites such as those based on germanium,21 tin,22-27 bismuth28-30 or double 

perovskites.31-34 Germanium perovskites, in particular, are excellent candidates to replace 

lead because most germanium compounds are considered as having rather low toxicity and 

are not carcinogenic to humans. 35,36 Moreover, germanium iodide perovskites exhibit a 

direct bandgap of 1.6 eV with a similar corner-sharing octahedral network as lead 

perovskites.37 Theoretical studies suggest that germanium perovskites are a promising and 

competitive alternative to lead perovskites for efficient perovskite solar cells.38-42 In spite 

of this, germanium perovskites are notably less experimentally explored compared to the 

other lead-free perovskites mentioned. 

It is well established that transition metal doping can expand the application of 

semiconductor nanocrystals into new fields of energy transfer, optoelectronic devices and 

spintronics by introducing new electronic, optical and magnetic properties.43-46 Doping lead 

perovskite nanocrystals with transition metal manganese ions (Mn2+) has been shown to 

manipulate the magnetic and optical properties.47-49 Manganese substitutions of up to 46% 

were reported that greatly enhances the photoluminescence quantum yields by ~10 times.50 

Efficient energy transfer from the host to the dopants manganese ions leads to a 4T1– 6A1
 

manganese d-electron emission. However, lead ion (Pb2+) has a radius of 133 pm whereas 

high-spin manganese ion (Mn2+) has a radius of 97 pm.51 This large radius difference causes 

high lattice mismatch that will not allow formation of a solid solution according to Hume-

Rothery rules.52 On the contrary, germanium ions (Ge2+) have an ionic radius of 87 pm, 
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which is closer to the radius of Mn2+.51 This small radius difference (< 15%) should lead to 

a higher incorporation of Mn2+ in germanium perovskites compared to lead perovskites, 

although a complete solid solution is not expected due to the different crystal structures. 

Herein, we report the first synthesis of cesium germanium triiodide perovskite 

nanocrystals and demonstrate size control through ligand concentration. The bandgap of 

nanocrystals blue-shifted with decreasing particle size. We also doped high-spin, divalent 

manganese ions (Mn2+) into the octahedral germanium sites in the lattice. A linear lattice 

expansion was observed with ascending MnI2 synthetic loading, which is consistent with 

the incorporation of larger manganese ions in germanium perovskite lattice. Also, electron 

paramagnetic resonance spectroscopy (EPR) helps us better understand the local 

manganese ion environment in the doped germanium perovskites (CsGe1-xMnxI3).  

Experimental 

Materials. Germanium(IV) oxide (≥99.99%), cesium iodide (99.999%), hydriodic 

acid (ACS, 55%), hydrobromic acid (ACS, 48%) and cysteamine (95%) were purchased 

from Sigma-Aldrich; cesium bromide (99.9%-Cs), manganese(II) oxide (99%), 

manganese(II) iodide (98+%) and silicon powder (99+%) from Strem; hypophosphorous 

acid (50% w/w aqueous solution) from Alfa Aesar. All chemicals were used as received. 

Synthesis. Bulk germanium perovskites. Cesium germanium halide perovskites 

were prepared by a slightly modified literature procedure.21 Briefly, germanium(IV) oxide 

(10.5 mg, 0.1 mmol) was added to a mixture of hydrohalic acid (0.7 mL, 7.3 M for HI and 

0.6 mL, 8.8 M for HBr) and hypophosphorous acid (0.25 mL, 9.1 M), and heated up to 120 

°C while stirring until everything dissolved. An aqueous solution of cesium halide (0.3 mL, 

0.3 M) was injected. The mixture was cooled to 0 °C, and a black (CsGeI3) or orange 

(CsGeBr3) solid precipitated. The precipitate was collected by centrifugation for 5 min at 
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4500 rpm and kept under an inert, dry N2 or Ar atmosphere. Germanium perovskite 

nanocrystals. Cysteammonium halide solution: Cysteamine (771 mg, 10 mmol) was mixed 

with hydrohalic acid solution (1.4 mL, 7.3 M for HI or 1.4 mL, 8.8 M for HBr). 

Germanium(IV) oxide (10.5 mg, 0.1 mmol) was dissolved in a mixture of hydrohalic acid 

(0.7 mL, 7.3 M for HI and 0.6 mL, 8.8 M for HBr) and hypophosphorous acid (0.25 mL, 

9.1 M) at 120 °C. Cysteammonium halide solution (0.2 mL, 7.3 M) was added, causing the 

formation of an orange precipitate. Cesium halide solution (0.3 mL, 0.3 M) was added, 

causing the orange precipitate to redissolve. The mixture was cooled to 0 °C, and a black 

(CsGeI3) or orange (CsGeBr3) solid precipitated. The precipitate was collected by 

centrifugation for 5 min at 4500 rpm and kept under an inert, dry N2 or Ar atmosphere. For 

manganese-doped samples, a stoichiometric amount of germanium(IV) oxide was replaced 

(1:1) with the desired loading amount of manganese precursor (manganese oxide or 

manganese halide). The rest procedures are similar to the undoped samples. 

Structural Characterization. Powder X-ray diffraction (XRD) data were 

measured using Cu Kɑ radiation on Rigaku Ultima IV (40 kV, 44 mA). Samples were 

measured on a “background-less” quartz slide. Transmission electron microscopy (TEM) 

was conducted using a FEI Technai G2 F20 field emission TEM operating at up to 200 kV 

with a point-to-point resolution of less than 0.25 nm and a line-to-line resolution of less 

than 0.10 nm. Dilute sample solutions in toluene were dropped onto carbon-coated copper 

grids. Elemental composition was assessed by energy-dispersive spectroscopy (EDS). 

Particle sizes (dimensions) based on the longest edge and statistics (>300 particles) were 

measured manually using ImageJ. 

Optical Characterization. Optical extinction (absorption plus scattering) spectra 

of solutions were measured with a photodiode-array Agilent 8453 UV/vis 

spectrophotometer. Solvent absorption was recorded and subtracted from all spectra. 
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Diffuse reflectance spectra of solid films were measured with a SL1 Tungsten Halogen 

lamp (vis-IR), a SL3 Deuterium Lamp (UV), and a BLACK-Comet C-SR-100 

Spectrometer. Samples were prepared by drop-casting toluene solutions onto glass. Steady-

state photoluminescence (PL) spectra were measured with a Horiba-Jobin Yvon Nanolog 

scanning spectrofluorometer equipped with a photomultiplier detector. Relative PL 

quantum yields (QYs) were measured against using Coumarin 460 dye using standard 

procedures. 

Other characterization. Electron Paramagnetic Resonance (EPR) spectra were 

measured using an ELEXYS E580 EPR Spectrometer (Bruker BioSpin) equipped with an 

SHQE resonator and an Oxford ESR900 cryostat. The samples were dispersed in ethanol, 

placed in a 4 mm quartz tube, and frozen in liquid N2 prior to insertion into the cryostat. 

Low temperature spectra were measured at 10 K. Typical spectra were acquired with a 

sweep width of 5000 G, 2048 points, 8 G amplitude modulation, and 1.986 mW microwave 

power. Simulations were performed in the computational package EasySpin, which runs 

on the Matlab platform, using the “pepper” function. 

Results and Discussion 

Ge- vs. Pb-based Perovskites. Metal halide perovskites have a general formula 

AMX3, where A is a monovalent cation (CH3NH3
+, Cs+), M is a divalent metal cation (Pb2+, 

Ge2+) and X is a halide anion (I-, Br- or Cl-). In the perovskite family, Pb-based perovskites 

have been the most widely studied due to their extraordinary photovoltaic properties; 

however, the heavy element lead still remains a concern for their solar cell 

commercialization. Due to the versatility of perovskite composition, one can substitute lead 

with any divalent metal cations and retain the perovskite structure, as long as the tolerance 

factor is close to one.53 Ge2+ is a promising alternative as lead substitute due to their high 

similarity in structural and optical properties when forming perovskites. Similar to the 
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[PbX6]2- corner sharing network in Pb-based perovskites, Ge-based perovskites also exhibit 

a corner-sharing [GeI6]4- octahedral network. While CsGeCl3 retains the cubic unit cell, 

CsGeBr3 and CsGeI3 have a hexagonal distorted structure with tilted octahedra due to a 

larger tolerance factor (Figure 1a-c).54,55 The distorted octahedra in CsGeI3 has different 

Ge–I bond lengths where three bonds are shorter with a distance of 2.75 Å while the other 

three bonds are longer with a distance of 3.26 Å (Figure 1d).21 This asymmetry in octahedra 

is caused by a second-order Jahn-Teller effect.56  

 

Figure 1. Unit cells of cesium germanium perovskite CsGeCl3 (a), CsGeBr3
 (b) and CsGeI3 

(c) and octahedral germanium(II) coordination geometry of cesium germanium iodide 

perovskites (d). 

One unique photophysical property Pb-based perovskites exhibit is their 

panchromatic absorption. Especially the iodide perovskite CH3NH3PbI3 has a bandgap of 

820 nm (1.5 eV), which allows it to absorb lights from the entire visible light region.57 This 

bandgap is very close to the ideal bandgap of 1.34 eV for light harvesting materials, which 

indicates the theoretical efficiency limit is up to 33%.58 CsGeI3 also exhibits a band gap of 
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775 nm (1.6 eV), as shown in Figure 2c and 2d, which also allows CsGeI3 to utilize solar 

light efficiently.59 Figure S1 and Table S1 compare the bandgap values of CsGeX3 with 

CsPbX3 and CH3NH3PbX3. The bandgap values of germanium perovskites show only a 

minor difference with lead perovskites, which indicates the effect of Ge2+ around the Fermi 

level of perovskites is analogous to Pb2+.60 This observation further establishes germanium 

perovskites as a promising replacement for lead perovskite photovoltaic materials. 

Synthesis and Dimensionality Control. The general synthesis of CsGeI3 is shown in 

Scheme 1.21 Briefly, GeO2 is dissolved in a mixture of HI and H3PO2 at 120 °C followed 

by injection of CsI pre-dissolved in water. CsGeI3 is precipitated when the flask is 

submerged in an ice bath. H3PO2 serves as a reducing agent and prevents the oxidation of 

Ge2+ in CsGeI3, which explains why we can perform this reaction in air. Upon adding GeO2 

into the acidic solution, GeI4 is initially formed as an orange powder (confirmed by XRD, 

see Figure S2) that then re-dissolves by maintaining 120 °C over several seconds to form a 

transparent yellow solution. These observations suggest that GeI4 is formed from the 

reaction between GeO2 and HI followed by reduction of GeI4 with H3PO2 to form Ge2+. 

Powder X-ray diffraction (XRD) shows that our CsGeI3 sample matches the standard 

pattern (Figure 2a). The sample crystalizes in micro-size scale as shown by SEM (Figure 

2b). A bandgap of 1.6 eV is confirmed by diffuse reflectance and Tauc plot (Figure 2c and 

2d), but no photoluminescence has been observed from CsGeI3. Following the similar 

method using HBr, we are also able to synthesize CsGeBr3, which appears as an orange 

precipitate in ice-water bath. Nothing precipitated out when we tried to synthesize CsGeCl3, 

possibly due to a higher solubility of CsGeCl3 in water.  
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Scheme 1. 

 

 

Figure 2. Powder XRD patterns (a), a typical SEM image (b), diffuse reflectance spectrum 

(c) and Tauc plot (d) of CsGeI3
 powder. A representative visual image is shown in the inset 

of (c). 

Knowing that perovskite nanocrystals often exhibit unique electronic and optical 

properties, we also explored the synthesis of CsGeI3 nanocrystals. Using bulky organic 

cation has been widely applied in synthesis of lead perovskite nanocrystals.61-65 This 

organic cation serves as a blocker to terminate the lattice growth direction leading to size-

controlled crystals. However, common ligands, such as the octylammonium cations used 

in our previous work,66, 67 do not result in germanium perovskite nanocrystals. Here we 
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utilized short chain, ionic organic cysteammonium cations (HSCH2CH2NH3
+) as ligands to 

control CsGeI3 particle size (Scheme 2). We investigated the effect of cysteammonium 

ligand concentration by keeping the concentration of [Ge+] and [Cs+] constant at 0.05 M 

while increasing the concentration of [HSCH2CH2NH3
+] from 0 to 2.50 M. Figure 3a 

displays the powder XRD patterns of CsGeI3 perovskites at different concentrations of 

ligand concentrations. With cysteammonium ligand concentration up to 2.50M, powder 

XRD patterns match the CsGeI3
 standard pattern. As expected, a larger ligand concentration 

leads to a smaller particles size. Calculated by Scherrer equation, the particle size is over 

100 nm when no ligands are introduced and is reduced to 26 ± 2 nm with a ligand 

concentration of 2.50 M (Figure 3b). When ligand concentration is 2.50 M, the diffraction 

peak at 25 degrees could be a convolution of two broad peaks from CsGeI3 nanocrystals. 

Ligand concentration over 2.50M leads to no precipitate at the end of the reaction. 

Scheme 2.  

 

We characterized the morphology of CsGeI3 nanocrystals prepared with different 

ligand concentrations by scanning and transmission electron microscopy (SEM and TEM). 

In the absence of cysteammonium cations, the crystals are quite large with an average 

particle size over 100 µm (Figure 4a). When ligand concentration is 0.5 M (10 molar 

equivalents), the average particle size is 79 ± 26 nm with triangular and hexagonal 

morphologies (Figure 4b). If the ligand concentration is increased to 2.5 M, the particle size 

decreases to 34 ± 8 nm with a narrower size distribution (Figure 4c and 4e). Selected area 

electron diffraction (SAED) of CsGeI3 nanocrystals is consistent with the trigonal structure 
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(Figure 4d). Composition analyses of several individual particles by energy dispersive X-

ray spectroscopy (EDS) confirmed the presence of all three elements with atomic % of 15 

± 1 for Cs, 27 ± 2 for Ge and 57 ± 1 for I (Cs: Ge: I = 1: 1.8: 3.8). High-resolution 

transmission electron microscopy (HRTEM) shows the lattice fringes along (021) 

direction, which has a d spacing of 3.425 Å (Figure 5). 

 

Figure 3. (a) Powder XRD patterns of CsGeI3 perovskite crystals made in different ligand 

concentrations. [Ge2+] = [Cs+] = 0.05 M in all cases. (b) Average XRD sizes based on 

Scherrer equation as a function of ligand concentrations. The full width half maxima 

(FWHM) of the two most intense peaks, (-222) and (021), were measured to calculate XRD 

sizes and error bars. 
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Figure 4. Representative SEM (a), TEM (b, c) images, SAED pattern (d) and size 

distribution histograms (over 300 particles counted in each case) for CsGeI3 perovskites at 

three different ligand concentrations: 0, 0.5 and 2.5 M (a, b and c, respectively). SAED 

pattern (d) is collected on the CsGeI3 with ligand concentration of 0.5 M. 

 

Figure 5. Representative HRTEM image of a CsGeI3 nanocrystal. A line profile along the 

(021) direction (red line and inset) reveals lattice spacings of 0.3425 nm. 
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Figure 6 shows solid state diffuse reflectance spectra and their Tauc plots of CsGeI3 

perovskites. The diffuse reflectance spectra (Figure 6a) are better than solution phase 

absorption spectra in determining the absorption onsets because of the poor solubility of 

CsGeI3 in aqueous solution. Tauc plots (Figure 6b) display a blue-shift from 1.61 eV for 

bulk CsGeI3 ([ligand] = 0) to 1.66 eV for nano CsGeI3 ([ligand] = 2.5 M). To determine 

whether or not this shift results from quantum confinement, we calculated the excitonic 

Bohr diameter for CsGeI3. In effective mass theory,68 the effective Bohr radius of a 

Wannier-Mott exciton can be determined from 𝑎∗ =  𝑎0𝜀∞(
𝑚0

𝑚𝑒
+  

𝑚0

𝑚ℎ
), where hydrogen 

Bohr radius a0 = 0.0529 nm, effective dielectric constant ε∞ = 5.0, electron-hole reduced 

effective masses mh/m0 = 0.2 and me/m0 = 0.4 (Z → L)  or 0.2 (Z → Γ).56 Using these 

values, we estimated the effective Bohr radius is 2.5 nm. However, the smallest average 

particle size we have obtained is 34 ± 8 nm, which is larger than the estimated Bohr radius 

and disproves the hypothesis that the blue-shift derives from quantum confinement. In our 

previous work on lead perovskite nanocrystals, it is worth mentioning that we also noticed 

a bandgap blue shift when crystal size is larger than the reported Bohr radii.13 Further study 

needs to be carried out to understand this phenomenon. 

Table 1. CsGeI3 perovskites synthesized under various ligand concentrations. 

[Ligand] (M) XRD size (nm) a TEM size Bandgap (eV) 

0 

0.05 

106 ± 14 

78 ± 4 

50-500 µm b 

-c 

1.61 

1.62 

0.50 63 ± 12 79 ± 26 nm 1.64 

2.50 26 ± 2 34 ± 8 nm 1.66 
a XRD size is calculated by Scherrer equation. b Measured by SEM images. c Not measured. 

 



www.manaraa.com

83 

 

 

Figure 6. Diffuse reflectance (a) and Tauc plot (b) for CsGeI3 crystals made with different 

cysteammonium ligand concentrations. [Ge2+] = [Cs+] = 0.05 M in all cases. 

Cysteammonium cations can also be used as ligands in the synthesis of CsGeBr3. 

Keeping the concentration of [Ge+] and [Cs+] constant at 0.067 M while increasing the 

concentration of [HSCH2CH2NH3
+] from 0 to 3.33 M. Figure 7a displays the powder XRD 

patterns of CsGeBr3 perovskites at different concentrations of ligand concentrations. With 

cysteammonium ligand concentration up to 3.33 M, powder XRD patterns match the 

CsGeBr3
 standard pattern. As expected, a larger ligand concentration leads to a smaller 
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particles size. Calculated by Scherrer equation, the particle size is over 100 nm when no 

ligands are introduced and is reduced to 50 ± 5 nm with a ligand concentration of 3.33 M. 

Noted that the XRD pattern of CsGeBr3 without any ligands has been amplified by 50 times 

because the intensity of diffraction peak from (-222) plane is too high, possibly due to 

preferred orientation in this sample. A representative TEM image of CsGeBr3 perovskites 

at a ligand concentration of 3.33 M shows the nanoparticles have an average size of 53 ± 

10 nm.  

 

Figure 7. (a) Powder XRD patterns of CsGeBr3 perovskite crystals made in different ligand 

concentrations. [Ge2+] = [Cs+] = 0.067 M in all cases. (b) A representative TEM image of 

CsGeBr3 perovskites at a ligand concentration of 3.33 M.  
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Figure 8a shows for CsGeBr3 crystals made with different cysteammonium ligand 

concentrations. CsGeBr3 nanocrystals have a bandgap of 520 nm (2.4 eV). Unlike CsGeI3 

nanocrystals, no bandgap shift is observed with different ligand concentrations. 

Photoluminescence (PL) spectra (Figure 8b) show a weak PL at 500 nm, especially in 

nanocrystals. Among these three ligand concentrations, CsGeBr3 nanocrystals with ligands 

appear to be more emissive than sample without ligands. This could be explained by better 

surface passivation of the nanocrystals from cysteammonium cations. When ligand 

concentration reaches 0.67 M, CsGeBr3 nanocrystals have the most intense PL with a 

quantum yield of 0.34%. Noted that the photoluminescence peak at 450 nm is not derived 

from CsGeBr3. We speculate some emissive impurities might give rise to the blue peak at 

450 nm.  

 

Figure 8. Diffuse reflectance (a) and photoluminescence spectra(b) for CsGeBr3 crystals 

made with different cysteammonium ligand concentrations. [Ge2+] = [Cs+] = 0.067 M in all 

cases. 
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Manganese Doping. In order to incorporate Mn2+ into CsGeI3 perovskites, we 

introduced MnI2 with GeO2 at the start of the reaction and the procedure above was repeated 

(Scheme 3). Powder XRD shows that CsGe1-xMnxI3 retains the same trigonal structure as 

CsGeI3 (Figure 9a) despite the fact that CsMnI3 has a hexagonal structure with a face-

sharing octahedra network (Figure S3). The zoomed-in region of XRD patterns between 28 

and 30 degrees reveals the peaks are monotonically shifted to lower angles with increasing 

MnI2 synthetic loading (Figure 9b). The peak shift of CsMnxGe1-xI3 in Figure 9b is 

consistent with lattice expansion due to the substitution of octahedral Ge2+ (six-coordinate 

crystal ionic radius of 87 pm) with larger Mn2+ (six-coordinate high spin crystal ionic radius 

of 97 pm).51 The percentage of manganese incorporation into the CsGeI3 lattice was 

estimated based on Vegard’s Law69,70: 

𝑎(𝐶𝑠𝑀𝑛𝑥𝐺𝑒1−𝑥𝐼3) = 𝑎(𝐶𝑠𝐺𝑒𝐼3)(𝑥) + 𝑎(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐶𝑠𝑀𝑛𝐼3)(1 − 𝑥).  

Here, a is the lattice parameter and x is the composition of Mn2+ in the crystals. 

Since CsMnI3 has a different crystal structure with CsGeI3 (Figure 1c and S3), we simulated 

a trigonal cornering-sharing CsMnI3
 crystal as a reference to estimate the lattice parameter 

(see Figure S4 for details). Both the lattice parameter and actual manganese incorporation 

in CsMnxGe1-xI3 are plotted as a function of MnI2 synthetic loading in Figure 9c and Table 

1. The shift of the most intense diffraction peak indicates a linear lattice expansion from 

8.358 Å (CsGeI3) to 8.397 Å (CsMn0.29Ge0.71I3). To ensure this peak shift is not caused by 

other factors such as sample height or instrument effects, silicon powder was used as an 

internal standard. A problem with this standard is that the most intense diffraction peak of 

CsMnI3
 overlaps with one of the major silicon peaks at ~28 degrees. We also collected the 

powder XRD without silicon powder to confirm that no CsMnI3 formed. Note that the 

actual manganese incorporation is lower than MnI2 synthetic loading, which means not all 
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Mn2+ can be doped into CsGeI3
 crystals. The majority of Mn2+ still remains in solution and 

no new precipitates are observed. We also noticed the reaction yield decreases with 

increasing MnI2 synthetic loading (Figure S5 and Table S2), which also supports our 

assumption that most of Mn2+ is present in the solution. CsMnI3 might be more soluble in 

aqueous solution, possibly due to a more prominent ionic property of Mn2+ than Ge2+.  

Scheme 3.  

 

 

Figure 9. (a) Powder XRD patterns of CsMnxGe1-xI3 (x = 0 – 0.8, MnI2 synthetic loading) 

with silicon powder as an internal standard, denoted by an asterisk symbol(*). (b) A 

zoomed-in region between 28 and 30 degrees shows the most intense peak of CsGeI3 shifts 

to lower 2 theta with increasing MnI2 synthetic loading. (c) Lattice parameter a and 

manganese incorporation as a function of MnI2 synthetic loading (%) for CsMnxGe1-xI3 

crystals. 
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Table 2. Structural parameters of CsMnxGe1-xI3 perovskites. 

MnI2 

synthetic loading 

Lattice 

parameter (Å) 

Mn 

incorporation 

Bandgap 

(eV) 

0% 8.358 0% 1.61 

20% 8.369 8% 1.62 

40% 8.380 16% 1.62 

80% 8.397 29% 1.60 

 

Doped samples exhibit similar optical properties and morphologies as undoped 

CsGeI3 (Figure S6). Tauc plot shows all the band-edge spectral features of doped samples 

appear around 1.6 eV, which indicates the dopants at different concentrations have little 

effect on the electronic structure of the host perovskites. This is consistent with a previous 

study of manganese doped CsPbX3 (X = Cl, Br and I) perovskites.48 No photoluminescence 

has been observed from doped samples, which is reasonable because the bandgap of CsGeI3 

is lower than manganese emission bands.47 A typical SEM image in Figure S5 displays the 

manganese doped perovskites are polycrystalline with crystal sizes in the micrometer scale. 

We also tried to dope Mn2+ into CsGeI3 nanocrystals prepared with a cysteammonium 

concentration of 0.50 M (10 molar equivalents). Powder XRD shows that CsMnxGe1-xI3 

nanocrystals have the same trigonal structure as the undoped CsGeI3 without impurities 

(Figure 10a). Again, we used Si powder as an internal standard to calibrate the positions of 

CsMnxGe1-xI3 nanocrystal patterns. The calibrated patterns exhibit a shift to lower 2 theta 

degrees with increasing MnI2 synthetic loading, suggesting the presence of lattice 

expansion (Figure 10b). However, we also observed that the lattice parameter a of undoped 

CsGeI3 nanocrystals is larger than that of bulk CsGeI3 (Figure 10b) We suspect the lattice 

expansion of undoped nanocrystals is caused by the incorporation of cysteammonium 

cations into the CsGeI3 lattice. Some cysteammonium cations may substitute Cs+ sites or 

attach on the surface of nanocrystals and exert a tensile strain on the CsGeI3 lattice. To test 
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this hypothesis, we estimated the ionic radius of cysteammonium cations as 2.83 Å based 

on the unit cell of cysteammonium chloride (HS(CH2)2NH3Cl) (see Figure S7 for details of 

size estimation). This value is comparable to the ionic radii of organic cations in 

organometal perovskites, such as the guanidinium cation (2.78 Å) or ethylammonium 

cation (2.74 Å),71 and this gives a tolerance factor t of 1.2. Values of t larger than 1 indicate 

that cysteammonium cations are too big to fit in the lattice. Cysteammonium is most likely 

attaches to the surface of the nanocrystals and applies a tensile strain on the CsGeI3 lattice. 

To confirm the presence of cysteammonium in the nanocrystal samples, we performed 

CHN/S combustion elemental analysis. Results show the CsGeI3 nanocrystal samples have 

average wt% of 2.59 ± 0.09 %C, 1.08 ± 0.05 %H, 1.43 ± 0.06%N and 3.29 ± 0.10 %S. The 

atom number ratio of C: H: N: S = 2: 11: 1: 1, which is in good agreement of 

cysteammonium cation formula C2H8NS+. Therefore, the lattice expansion could be due to 

a synergic effect of incorporation of manganese and tensile strain from cysteammonium 

ligands. We can calculate manganese incorporation by Vegard’s law if we offset the lattice 

expansion by cysteammonium ligands (Figure 10b). Up to 16% manganese doping in 

CsGeI3 can be achieved when MnI2 synthetic loading is 40%. MnI2 synthetic loading over 

40% leads to no precipitate in ice-water bath. 

EPR Characterization. To confirm the presence of manganese ion dopants within 

the CsGeI3 perovskite lattice, we utilized electron paramagnetic resonance (EPR) 

spectroscopy. The X-band EPR spectra of doped samples with 20% and 40% MnI2 

synthetic loadings exhibit typical hyperfine splitting signals consistent with high spin, 

octahedrally coordinated Mn2+. EasySpin simulations of these EPR spectra results in a 

hyperfine splitting constant of A = 265 MHz that is consistent with previous studies of high 

spin octahedrally coordinated Mn2+ (Table 3 and 4).72-78 We also collected the EPR 

spectrum of MnI2 as a control. MnI2 has a hyperfine splitting constant A of 265 MHz that 
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is also consistent with high-spin octahedral Mn2+. The major difference between 

CsMnxGe1-xI3 and MnI2 is the zero-field splitting constant D, a parameter sensitive to 

distortion. D-values are usually small for hexacoordinate Mn(II) complexes and will 

increase with ligand sphere asymmetry.79 No hyperfine splitting was observed in the 80% 

Mn sample, likely because excess Mn2+ can reduce spin-spin interactions between 

neighboring magnetic ions.80 Unlike Mn: CdS, it is really hard to distinguish if Mn2+ sites 

are internal or on the surface in this system based on the values of hyperfine splitting 

constant A,81 because no matter it is internal or external the A values are similar for 

octahedral Mn2+. EPR spectra of the Mn-doped perovskite nanocrystals also confirm the 

presence of manganese (Figure 11). EasySpin simulations result in a hyperfine splitting 

constant A value of 265 MHz similar to both Mn-doped polycrystalline and MnI2 samples, 

which suggests that Mn2+ cations are high-spin and octahedrally coordinated.  

 

Figure 10. (a) Powder XRD patterns of CsMnxGe1-xI3 (x = 0, 0.2 or 0.4, MnI2 synthetic 

loading) nanocrystals with cysteammonium ligand concentration of 0.50 M. Silicon powder 
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is used as an internal standard. (b) Black balls are lattice parameter a and manganese 

incorporation as a function of MnI2 synthetic loading (%) for CsMnxGe1-xI3 nanocrystals. 

Red ball indicates the lattice parameter of CsGeI3 in the absence of cysteammonium 

ligands. 

 

Figure 11. EPR spectra of bulk and nano Mn-doped CsGeI3 perovskites and MnI2 in 

ethanol at 10 K. All the samples don’t have cysteammonium ligands in the reaction except 

Nano 20% Mn.  Red dashed curves are simulated EPR spectra by the least-squares fitting. 

Note that manganese percentages are calculated from MnI2 synthetic loading. 

Table 3. EPR parameters for CsMnxGe1-xI3 and MnI2. 

Parameters 
 MnI2 synthetic loading, mol% 

MnI2 
20%Mn Nano 20%Mn 40%Mn 

g 

A (MHz) 

2.0023 

265 

2.0023 

265 

2.0023 

265 

2.0023 

265 

D (MHz) 562 626  502 572  

D strain (MHz) 623 642  546 701 
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Table 4. Comparison of EPR parameters. 

Sample Mn2+ site 
EPR parameters  

Reference 
g A (MHz) 

Mn: CsPbCl3 octahedral n.a. 240 [48] 

[Mn(CH3CN)6]2+ octahedral 2.003 260 [73] 

Mn: PbI2 octahedral 
gǁ = 1.9955 

g⊥ = 2.001 
220 [74] 

[Mn(MeOH)6]2+ octahedral 2.0018 266 [76] 

[Mn(H2O)6]2+ octahedral 2.002 266 [76] 

      

Conclusion 

To address the concerns about the heavy element lead in conventional lead 

perovskites, we developed a synthetic route to germanium perovskites and their 

nanocrystals. CsGeI3 exhibits a similar bandgap (1.6 eV) and corner-sharing octahedra 

network as lead perovskites that are potentially promising for photovoltaics. In addition, 

we have also successfully doped Mn2+ into CsGeI3 lattice. XRD patterns show a lattice 

expansion with increasing manganese iodide loading, which we believed is caused by the 

substitution of Ge2+ by larger Mn2+. The manganese incorporation percentage is up to 29% 

according to Vegard’s law.  EPR analysis also confirms the presence of Mn2+ and indicates 

Mn2+ sites are highly distorted, which is in good agreement with Ge2+ sites in CsGeI3. Size 

control of CsGeI3 perovskite nanocrystals is achieved by using cysteammonium cations as 

capping ligands. Diffraction peak broadening in powder XRD and TEM images corroborate 

the successful size control without introducing impurities. Diffuse reflectance 

measurements also reveal a bandgap blue-shift of 0.05 eV in the nanocrystals. Because the 

sizes of the nanocrystals are much larger than the Bohr radius, it is unlikely this blue shift 

is the result of quantum confinement. We also noticed that the lattice parameter for 
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nanocrystals is larger than that observed in the bulk, possibly caused by tensile strain from 

the bulky organic cations on the surface. Mn2+-doped nanocrystals also have a larger lattice 

parameter, which is a synergetic effect of manganese incorporation and surface strain. EPR 

analysis on nanocrystals confirms the presence of high spin Mn2+ doping into the highly 

distorted octahedral sites.  We expect these results will extend the arsenal of perovskites, 

especially the lead-free ones, beyond photovoltaics and to the fields of spintronics and 

magnetic data storage.   
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Supporting Information 

Table S1. Bandgap comparison between Pb- and Ge-based perovskites. 

Compositions Reported 

experiment bandgap 

(bulk, eV) 

Experiment 

bandgap 

(bulk, eV) 

Bohr radius 

(nm) 

CsGeCl3 3.67, 3.43 - - 

CsGeBr3 2.32, 2.38 2.36 - 

CsGeI3 1.60 1.60 4, 5  

CsPbCl3 3.0 - 5 

CsPbBr3 2.2 - 7 

CsPbI3 1.7 - 12 

CH3NH3PbCl3 3.1 3.11 - 

CH3NH3PbBr3 2.3 2.36 2 

CH3NH3PbI3 1.5 1.62 2.2 

 

 
 

Figure S1. Bandgap comparison of CsGeX3, CsPbX3 and CH3NH3PbX3 (X = Cl, Br and I) 

perovskites.  

 
Figure S2. XRD pattern of the orange pattern. Major diffraction peaks match with GeI4 standard 

pattern. 
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Figure S3. A unit cell of CsMnI3 perovskites. 

 
Figure S4. (a) unit cell of simulated CsMnI3 and (b) octahedral Mn(II) coordination 

geometry of CsMnxGe1-xI3. 

 

 

CsGeI3 has a trigonal structure with a = 8.3582 Å and c = 10.6098 Å. High spin 

octahedral Mn2+ has an ionic size of 0.97 Å whereas the diameter of Ge2+ is 0.87 Å. 

Assuming the central atoms in the octahedra are in contact with the surrounding halide 

anions, by substituting Ge2+ with Mn2+, this will expand the octahedra by 0.1 Å. This leads 

to an expansion of the edge of the small cube in Figure S3(b) by 0.1 Å. Since the longer 

edge c in Fig S3(a) is the space diagonal of the small cube in Figure S3(b), 0.1 Å expansion 

in the octahedral will result in an expansion of 0.1 Å × √3 = 0.1732 Å for the longer edge 

c, which gives the length of c axis 10.6098 Å + 0.1732 Å = 10.7830 Å. Since the simulated 
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CsMnI3 retains the structure of CsGeI3, they should have the same value of c/a, which is 

1.2694. Therefore, the shorter edge of the simulated CsMnI3 should be 8.4946 Å. Knowing 

the lattice parameters of the simulated CsMnI3 unit cells, we can generate an XRD standard 

pattern as a reference to calculate manganese incorporation.   

 
Figure S5. CsMnxGe1-xI3 reaction yields as a function of manganese synthetic loading.  

 

Table S1. CsMnxGe1-xI3 reaction yields. 

Mn synthetic loading  Final weight (mg) %Yield 

0% 60.8 51.9% 

20% 36.7 31.8% 

40% 22.3 19.0% 

60% 21.6 18.9% 

80% 7.0 6.1% 

100% 0 0% 

 

 
Figure S6. Tauc plot (a) and a typical SEM image (b) of CsMnxGe1-xI3

 crystals. 
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Figure S7. Unit cell of cysteammonium chloride. 

 

Size Estimation of Cysteammonium Cation. The volume of cysteammonium 

chloride unit cell V(unit cell) = 560  Å3 and Z = 4. Radius of Cl- is 1.67 Å. If we assume 

cysteammonium cations and chloride anions are spheres, the volume of one cation should 

be V(HSCH2CH2NH3
 +) = V(unit cell)/4 -V(Cl-) = 120.5 Å3. Therefore, radius of 

cysteammonium cation should be 283 pm.  
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CHAPTER 5.    GERMANIUM–TIN/CADMIUM SULFIDE CORE/SHELL 

NANOCRYSTALS WITH ENHANCED NEAR-INFRARED 

PHOTOLUMINESCENCE 

Reprinted with permission from Chem. Mater. 2017, 29, 6012–6021. 

Copyright © 2017 

American Chemical Society 

Brett W. Boote, Long Men, Himashi P. Andaraarachchi, Ujjal Bhattacharjee, Jacob W. 

Petrich, Javier Vela, Emily A. Smith 

Abstract 

Ge1-xSnx alloy nanocrystals and Ge1-xSnx core/shell nanocrystals were prepared via 

solution phase synthesis and their size, composition, and optical properties were 

characterized. The diameter of the nanocrystal samples ranged from 6 to 13 nm. The crystal 

structure of the Ge1-xSnx materials was consistent with cubic diamond phase while the CdS 

shell was consistent with the zinc blende polytype. Inclusion of Sn alone does not result in 

enhanced photoluminescence intensity, however, adding an epitaxial CdS shell onto the 

Ge1-xSnx nanocrystals does enhance the photoluminescence up to 15× over Ge/CdS 

nanocrystals with a pure Ge core. More effective passivation of surface defects—and a 

consequent decrease in surface oxidation—by the CdS shell as a result of improved epitaxy 

(smaller lattice mismatch) is the most likely explanation for the increased 

photoluminescence observed for the Ge1-xSnx/CdS materials. With enhanced 

photoluminescence in the near-infrared, Ge1-xSnx core/shell nanocrystals might be useful 

alternatives to other materials for energy capture and conversion applications and as 

imaging probes. 

Introduction 

Ge-based materials have garnered significant attention recently as alternatives to 

other well-studied luminescent semiconductors, such as cadmium and lead 



www.manaraa.com

108 

 

chalcogenides.1,2 Materials made of elemental Ge have band gaps in the 0.67 to 1.6 eV 

range for bulk and highly confined (~2-3 nm) nanocrystals, respectively.3 The large blue 

shift in the band gap of the nanocrystals is due to size-dependent quantum confinement. 

Though prone to oxidation when uncoated, Ge nanocrystals have been shown to exhibit 

increased stability as well as enhanced photoluminescence when a suitable shell is 

added.4,54, 5  

Ge initially would seem to have limited utility in energy applications due to its 

inherent indirect band gap, which lowers its absorption cross-section and quantum yields. 

Recent reports suggest incorporation of Sn into Ge nanocrystals and thin films should 

produce a more direct band gap as a result of lattice strain.6-8 For thin films, modifying the 

substrate on which the films are grown also allows the strain to be tuned while keeping the 

Sn composition constant.9 A careful study of the bowing parameter on Ge1-xSnx films 

showed the crossover Sn content to be x = 0.087, which was higher than previously 

predicted.10 It has also been shown by Senaratne et al. that n-type doping of Ge1-xSnx films 

enhances the photoluminescence.11 Recently, Stange et al. demonstrated a strain-dependent 

indirect-to-direct band gap transition in Ge0.875Sn0.125 thin films grown on Ge buffer 

layers.12 Band gap characteristics of related Ge-rich Ge1-xSix films have also been studied 

as a step toward the design of ternary systems based on Si, Ge, and Sn.2 

Over the last decade, various methods to prepare Ge nanocrystals have been 

developed. Reduction of germanium halides (GeCl4, GeBr2, GeI2 or GeI4) using strong 

reducing agents (NaBH4, LiAlH4, etc.) in the presence of suitable surfactants [oleylamine, 

octadecene (ODE), trioctylphosphine (TOP)] is widely used to make monodisperse Ge 

nanocrystals.13-22 Heating a solution of GeBr2 or GeI2 with a surfactant has also been shown 

to generate Ge nanocrystals.23-25 Co-reduction of GeI2 and GeI4 is another common strategy 

for generating Ge nanocrystals in the ~2-20nm size regime, where the precursor ratio 
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controls the particle size.3, 26-30 The polymerization of [Ge9]4- or other related Zintl ions, 

both with and without linking cations such as Ge4+ or Pt2+, generates highly ordered, porous 

Ge nanocrystals.31-35 Other preparations involve reduction of Ge-rich oxides,36-41 heat-

assisted reduction of the GeH2 Wittig adduct Ph3PCMe2·GeH2·BH3,42, 43 laser photolysis of 

Ge(CH3)4 or GeH4 gas,44-46 photolysis of Ge wafer,47 electroless deposition on preformed 

Ag nanocrystals,48 Au-catalyzed vapor-liquid-solid growth using GeH4
49 or 

diphenylgermane,50 ultrasonic aerosol pyrolysis of tetrapropylgermane,51 solution or solid 

phase reduction of NaGe,52 plasma decomposition of GeCl4
53-55 or GeH4,56 sulfur-assisted 

thermal decomposition of triphenylgermanium chloride,57 and heating a solution of an 

alkylgermane in various high-temperature organic solvents.58  

The preparation of Ge-Sn alloy nanocrystals typically follows one of the 

aforementioned strategies with the addition of a suitable Sn precursor, such as tin(II) 

chloride (SnCl2) or bis(trimethylsilyl)amide [Sn(HDMS)2].6, 59 A recent report showed the 

bottom-up formation of Ge1-xSnx nanowires grown from Sn nanocrystals.60 The 

concentration of Sn in these nanowires was found to be 12.4 atom% (x = 0.124). Ge1-xSnx 

nanowires have also been formed from mixed Ge(II) and Sn(II) imido cubane precursors.61 

Spherical, Sn-rich Ge-Sn nanocrystals within a Ge matrix were prepared by annealing a 

Ge-Sn alloy layer cast between two thick layers of Ge.62 Small aspect ratio Ge-Sn nanorod 

heterostructures have been prepared in one-pot through sequential additions of Sn and Ge 

precursors.63 There are also several reports on Ge-Sn alloy thin films to study strained and 

relaxed phases.7, 9, 64, 65 

Raman spectroscopy is very useful for the characterization of multiple component 

inorganic materials. It can be used to characterize amorphous vs. crystalline materials58 and 

to determine strain within alloy systems.6, 60, 61 Lin et al. independently found the 

contributions of alloy composition and strain to the shift in the Ge-Ge longitudinal optical 
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(LO) phonon in Ge1-xSnx films by tuning substrate topology.9 They found a linear 

dependence between the Raman shift and film strain (Δω = -(563 ± 34)ε cm-1) as well as 

Sn composition (Δω = -(82 ± 4)x cm-1) where ε is the strain (in fractional form) and x is the 

Sn composition. Esteves et al. measured the Ge LO phonon mode by Raman spectroscopy 

for spherical Ge1-xSnx nanocrystals with increasing Sn content up to x = 0.279.6 Increasing 

Sn content was associated with a lower Raman shift from ~294 to 287 cm-1, which they 

attributed to combined alloy composition and lattice strain. Using Raman spectroscopy and 

scanning tunneling electron microscopy with energy dispersive X-ray spectroscopy 

(STEM-EDX), Seifner et al. correlated a shift in the LO phonon mode with varying Sn 

content for Ge1-xSnx nanorods.61 A maximum shift in the LO phonon mode of -15 cm-1 was 

observed for nanorod sections where the mole fraction of Sn was at least 0.20. Similar 

behavior in Ge1-xSnx nanorods was observed by Biswas and coworkers.50  

X-ray photoelectron spectroscopy (XPS) is another technique well suited to 

characterize Ge materials since they are prone to oxidation. XPS data for Ge1-xSnx 

nanocrystals synthesized by Ramasamy et al. showed typical peaks corresponding to Ge0, 

Ge2+, Ge4+, Sn0, and a broad, overlapping peak for Sn2+ and Sn4+.59 Relatively high ratios 

of the metallic peak to the oxidized peaks correlate to very little surface oxidation of these 

nanocrystals. Esteves and coworkers observed similar results, where three types of peaks 

were present: metallic Ge0 and Sn0 peaks from interior atoms, Ge2+ and Sn2+/4+ peaks from 

atoms bound to passivating ligands, and a small Ge4+peak from GeO2 at the surface.6 It has 

also been shown by XPS that treating Ge nanocrystals with dilute HCl removed a high 

percentage of a GeO2 layer at the surface, with weakly bound Cl- acting as a passivating 

ligand.45 Indeed, all reports on the preparation of Ge nanocrystals where XPS was 

performed show strong peaks for Ge0 and small contributions from oxidized species, 

whether they are attributed to surface ligands and/or surface oxidation (GeO2).19, 29, 66 



www.manaraa.com

111 

 

The photoluminescence (PL) properties of Ge-based materials are highly sensitive 

to the resultant size of the nanocrystals as well as other properties such as the capping ligand 

used.3, 4, 18, 53, 67 Lee et al. prepared Ge nanocrystals stabilized with 1-octadecene that 

exhibited luminescence maxima from 900 to 1400 nm for diameters 3.2 to 4.0 nm.18 Ruddy 

and coworkers demonstrated luminescent 2.3-4.7 nm nanocrystals capped with 1-

octadecene prepared by co-reduction of GeI2 and GeI4 with size-dependent near-infrared 

PL from 860-1230 nm.3 Guo et al. demonstrated 7 nm Ge/4.9CdS core/shell nanocrystals 

that exhibited a PL maximum at 950 nm.4 Wheeler and coworkers showed 4.8-10.2 nm Ge 

nanocrystals capped with alkyl chains synthesized in the vapor phase that exhibit PL from 

1200-1610 nm.53 Recently, Robel and coworkers monitored the combined effect of 

temperature and high magnetic field on the PL lifetimes of Ge nanocrystals, which showed 

splitting between closely-spaced states as well as mixing between dark and bright states all 

contribute toward the indirect PL.67 The intricacies of these widely varying optical 

properties are not clear: surface states very likely play a role for the luminescence in the 

visible region, as this extent of a blue shift from the bulk band gap is not explained by 

confinement alone. 

Temperature-dependent PL studies have also been performed to examine the direct 

and indirect band gap contributions of Ge1-xSnx materials.68, 69 The Arachchige group has 

demonstrated highly confined Ge1-xSnx nanocrystals showing PL in the 620 to 770 nm 

range, which closely follow calculations using ab initio HSE hybrid functional theory. They 

also used time-resolved PL at low (15 K) and ambient temperatures to further understand 

carrier dynamics.70, 71 PL lifetimes at 15 K were found to be 3-27 μs, three orders of 

magnitude slower than at room temperature, owing to slow recombination of carriers in 

surface traps and spin-forbidden dark excitons. Temperature effects on the PL of very thin 



www.manaraa.com

112 

 

Ge1-xSnx films have also been studied, showing a monotonic thermal PL quenching despite 

the indirect nature of the band gap.72  

Reported herein are the comparative solution phase synthesis, characterization, and 

optical properties of Ge1-xSnx alloy nanocrystals vs. Ge1-xSnx/CdS core/shell nanocrystals. 

All nanocrystalline samples were characterized by X-ray diffraction (XRD), transmission 

electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy 

(XPS), and steady-state and time-resolved near infrared PL spectroscopy. The purpose of 

this work is to better understand the photophysical properties of Sn-doped Ge-based 

nanocrystals that may be useful for energy-related applications such as photovoltaics, light 

emitting devices (LEDs) or, with appropriate surface passivation,73, 74 as near-infrared 

active luminescent biological markers. 

Experimental  

Materials. Cadmium oxide (CdO, 99.998%), sulfur (S8, 99.999%) and oleic acid 

(90%) were purchased from Alfa Aesar; n-butyllithum (n-BuLi, 1.6 M hexane solution), 

bis[bis(trimethylsilyl)amido]tin(II) (Sn(HMDS)2, ≥99.0%), oleylamine (OLA, ≥80-90.0%) 

and dioctylamine (octyl2NH, 98%) were purchased from Sigma-Aldrich; hexadecylamine 

(hexadecylNH2, 98%) and 1-octadecene (ODE, 90%) were purchased from Acros; and 

germanium(II) iodide (GeI2, 99.99+%-Ge) was purchased from Strem. Procedures were 

performed under a dry inert gas atmosphere (N2 or Ar) inside a glovebox or Schlenk line, 

unless specified otherwise. 

Preparation of Ge and Ge1-xSnx (core) nanocrystals. Germanium cores were 

synthesized by a modified literature procedure.4 Briefly, GeI2 (0.049 g, 0.15 mmol) was 

added to an oven-dry, four-neck 250 mL round-bottom (R.B.) flask containing 

hexadecylamine (0.75 g, 3.1 mmol). The contents were degassed under vacuum at 80°C for 

30 min, refilled with dry Ar, and heated to 200°C. A mixture of n-BuLi (0.2 mL of 1.6 M 
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hexane solution) and ODE (0.75 mL) was quickly injected while stirring. The temperature 

was raised from 200°C to 300°C, and the mixture further stirred for 1 h before cooling to 

room temperature (R.T., 21°C). The nanocrystals were purified by crashing three times 

with 10 mL of a 1:1 or 1:3 v/v acetone/methanol solution and centrifugation at 4500 rpm 

for 5 min, followed by redispersion in 5 mL of toluene. 

Ge1-xSnx cores were prepared by a modified reported procedure.59 Briefly, GeI2 

(0.049g, 0.15 mmol) and oleylamine (5 mL for Ge0.95Sn0.05; 10 mL for Ge0.75Sn0.25) with a 

varied amount of Sn(HMDS)2 (0.018 g, 0.04 mmol for Ge0.95Sn0.05; 0.066 g, 0.15 mmol for 

Ge0.75Sn0.25) were added into a four-neck 250 mL round-bottom flask in a glovebox. The 

mixture was degassed under vacuum at 80 °C for 30 min, refilled with dry Ar, and heated 

to 230 °C for Ge0.95Sn0.05 or 250°C for Ge0.75Sn0.25. The mixture was annealed for 30 min 

for Ge0.95Sn0.05 cores or 5 min for Ge0.75Sn0.25 cores before cooling down to R.T.. It should 

be noted that the exact compositions of Ge1-xSnx nanocrystals varied somewhat from batch 

to batch; the low Sn inclusion preparation varied from 4-8% Sn, while the high Sn inclusion 

preparation varied from 23-28%. For simplicity, these are labeled as Ge0.95Sn0.05 and 

Ge0.75Sn0.25, respectively.  

Preparation of Ge/CdS and Ge1-xSnx/CdS (core/shell) nanocrystals. Ge/CdS or Ge1-

xSnx/CdS core/shell nanocrystals were prepared as follows: precursor solutions of Cd and 

S were prepared by a literature procedure.4 0.1 M Cd(oleate)2 solution: CdO (318 mg, 2.48 

mmol), oleic acid (3.09 g, 10.9 mmol), and ODE (7.11 g, 28.2 mmol) were degassed under 

vacuum at 80°C for 60 min, refilled with Ar, and heated to 240°C until optically clear. The 

mixture was allowed to cool down to R.T., and (octyl)2NH (12.5 mL, 41.4 mmol), 

previously degassed at 80°C for 30 min, injected into it. 0.1 M S8 solution: S8 (79.0 mg, 

2.47 mmol) and ODE (19.7 g, 78.1 mmol) were degassed under a vacuum at 80°C for 30 

min, refilled with Ar, and heated to 180°C for 20 min until optically clear. 
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To prepare core-shell nanocrystals with excess precursors (one-pot synthesis), a 

batch of freshly prepared Ge1-xSnx cores (in amine or amine/ODE) solution, ODE (1.5 mL, 

4.7 mmol), and (octyl)2NH (1.5 mL, 5.0 mmol) were added to a four-neck 250 mL R.B. 

flask. The mixture was degassed at 80°C for 30 min, refilled with Ar, and heated to 230°C 

for Ge and Ge0.95Sn0.05 or 280°C for Ge0.75Sn0.25). Cd and S precursors were alternately 

injected using two programmable syringe pumps, each followed by a 15 min wait. The S 

precursor was injected first. 15 min after the last Cd injection, the mixture was allowed to 

cool to R.T.. Core-shell nanocrystals were washed as described above for Ge1-xSnx 

nanocrystals. 

To prepare core-shell nanocrystals without excess precursors, the procedure above 

was repeated using nanocrystal cores where excess precursors have been removed 

following the purification method above. Toluene was removed under vacuum prior to shell 

growth. 

Optical Characterization. Solution optical density (absorption plus scattering) 

spectra were measured with a photodiode array 8453 UV-visible spectrophotometer 

(Agilent, Santa Clara, CA). Steady-state photoluminescence (PL) spectra were measured 

using a Horiba-Jobin Yvon Nanolog scanning spectrofluorometer equipped with a liquid 

nitrogen-cooled InGaAs photodiode array. To account for sample concentration, PL 

intensities were divided by the optical density at the excitation wavelength of 350 nm. 

Photoluminescence lifetime measurements were performed using a previously described 

setup with a Nd:YAG laser (Continuum) and an avalanche photodiode.75 The samples in 

toluene solution were excited at 532-nm with a pulse energy of 1 mJ/cm2. The time-

resolved photoluminescence was collected using an 800-nm long-pass filter and the decay 

trace was fit to a single or double exponential decay as needed. 
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Raman microspectroscopy was performed on nanocrystals using a 532-nm Sapphire 

SF laser (Coherent, Santa Clara, CA) illuminating a DM IRBE inverted light microscope 

(Leica Microsystems, Buffalo Grove, IL) fitted with a 100× oil (1.47 NA) objective. The 

nanocrystal solutions were drop cast onto glass slides and dried under ambient conditions. 

The scattered light was passed into a HoloSpec spectrometer (Kaiser Optical Systems, Ann 

Arbor, MI) equipped with a Newton 940 CCD camera (Andor Technology, Belfast, United 

Kingdom). The laser power density was 1.3 × 104 W/cm2 with a laser spot size of 1 μm, 

and the acquisition time was 60 s. The data were plotted using IGOR (WaveMetrics, 

Portland, OR). 

Infrared spectroscopy was performed on a Bruker Vertex 80 FT-IR spectrometer 

equipped with a MIR_IR_XPM detector with 16 scans at a resolution of 4 cm–1. The 

samples were prepared as drop cast thin films on NaCl salt plates. Background spectra were 

collected under identical conditions, and samples were continuously purged with dry N2 to 

minimize water vapor absorbance. 

Structural Characterization. Powder X-ray diffraction (XRD) was measured using 

Cu Kα radiation on a Rigaku Ultima diffractometer. X-ray photoelectron spectroscopy 

(XPS) measurements were performed using a Kratos Amicus/ESCA 3400 instrument. The 

sample was irradiated with 240 W non-monochromated Mg Kα x-rays, and photoelectrons 

emitted at 0 ° from the surface were analyzed using a DuPont-type analyzer. The pass 

energy was set at 75 eV. CasaXPS was used to process raw data files. The binding energy 

of C 1s at 284.6 eV was used as a reference. Depth profiling was performed using 

monoatomic Ar ion sputtering for 8 s, followed by XPS acquisition. The acceleration 

voltage used was 500 V in order to minimize ion-induced reduction. Sample rotation during 

sputtering was used to achieve uniform etching. Transmission Electron Microscopy (TEM) 

was conducted using a FEI Tecnai G2 F20 field emission TEM operating at up to 200 kV. 
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Samples were prepared by placing 1 or 2 drops of concentrated toluene solutions onto 

carbon-coated copper grids. Elemental composition was characterized by energy-

dispersive spectroscopy (EDX). Nanocrystal dimensions were measured with ImageJ. The 

longest dimension was measured and reported. At least 300 nanocrystals were counted in 

each case. Uncertainties in all measurements are reported as standard deviations. 

Results and Discussion 

Synthesis and Characterization of Ge1-xSnx Core Nanocrystals. Ge, Ge0.95Sn0.05, and 

Ge0.75Sn0.25 nanocrystals were prepared and characterized by powder X-ray diffraction 

(XRD). Patterns of Ge1-xSnx nanocrystals shown in Figure 1 confirm the crystalline 

products are homogeneous nanoalloys of Ge and α-Sn in the cubic diamond phase with 

𝐹𝑑3𝑚  space group. The composition of Sn incorporated in the cubic Ge lattice was 

calculated based on Vegard’s Law: 𝑎(𝐺𝑒1−𝑥𝑆𝑛𝑥) = 𝑎(𝑆𝑛)(𝑥) + 𝑎(𝐺𝑒)(1 − 𝑥). Here, 𝑎 is the 

lattice parameter of the sample or standard and 𝑥  is the composition of Sn in the 

nanocrystal. Structural parameters of the Ge and Ge1-xSnx nanocrystals, as well as CdS, are 

shown in Table 1 and Figure 2. The shift in the diffraction peak to lower 2θ angles 

indicates a lattice expansion from 5.658 Å (Ge) to 5.706 Å (Ge0.95Sn0.05) and 5.870 Å 

(Ge0.75Sn0.25). To ensure the measured peak shift was not due to any measurement variables, 

such as the sample height in the XRD instrument, Si powder was used as an internal 

standard to align the experimental pattern for all samples. As is often the case in low 

temperature, solution-synthesized nanocrystals,5 the molar ratios of Ge:Sn used in the 

synthetic preparations were not conserved in the nanocrystal. For instance, the Ge0.75Sn0.25 

sample was prepared from a 1:1 molar ratio of Ge:Sn. This could be explained, in part, by 

the comparatively large cationic radius of Sn2+ compared to Ge2+, which contributes to Sn 

having a relatively low solubility in bulk Ge of about ~1%.76 However, Sn incorporation as 
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high as 42% has been reported in Ge1-xSnx nanocrystal alloys,59 likely because solution 

phase nanocrystal syntheses are often kinetically and not thermodynamically controlled. 

 

 

Figure 1. Experimental powder X-ray diffraction (XRD) patterns of Ge and Ge1-xSnx alloy 

nanocrystals. The standard powder XRD patterns of bulk Ge, α-Sn, and Si diamond (* = 

used as an internal standard) are shown for comparison. 

Table 1. Structural parameters of Ge and Ge1-xSnx nanocrystals. 

Material Crystal 

structure  

Lattice 

parameter (Å) 

Lattice 

mismatcha 

CdS zinc blende 5.832 0 

Ge diamond 5.658 +3.0% 

Ge0.95Sn0.05 diamond 5.706 +2.2% 

Ge0.75Sn0.25 diamond 5.870 -0.65% 
aa = 100  (ashell - acore)/(acore); signs refer to shell-induced core expansion (+) or compression 

(-). 
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Figure 2. Lattice parameter of Ge1-xSnx nanocrystals as a function of Sn incorporation. 

Ge0.75Sn0.25 nanocrystals have the smallest lattice mismatch with the cubic CdS (5.832, 

horizontal dashed line), compared to Ge or Ge0.95Sn0.05. The dashed gray line is a linear 

regression to the data. 

To accurately characterize the morphology and size of the nanocrystals, TEM 

images were collected (Figure 3). Size histograms for each sample are shown in Figure 

S1. Overall, the samples are well dispersed spheroidal nanocrystals with crystal sizes of 6 

± 1 nm (Ge), 6 ± 1 nm (Ge0.95Sn0.05), and 11 ± 2 nm (Ge0.75Sn0.25). Adding more Sn 

precursor always leads to larger core particles. In an effort to make Ge1-xSnx cores 

comparable in size to Ge cores, we lowered the precursor solution concentration and 

shortened the reaction time. However, while this approach works well for Ge0.95Sn0.05 with 

a particle size of 6 ± 1 nm, the smallest Ge0.75Sn0.25 we could synthesize still has a relatively 

large particle size of 11 ± 2 nm. In addition to TEM, energy dispersive spectrometry (EDX) 

was performed to assess the particle composition and homogeneity (Table 2). EDX data of 

Ge1-xSnx nanocrystals shows good agreement with the theoretical elemental composition 

calculated by Vegard’s Law. 
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Table 2. TEM-EDX analysis of Ge, Ge1-xSnx and Ge1-xSnx/CdS nanocrystals. 

Sample Size (nm) Composition: Ge, Sn, Cd, S 

Theoretical 

(%)a 

EDX (%) 

Ge 6 ± 1 100, 0, 0, 0 100, 0, 0, 0 

Ge0.95Sn0.05 6 ± 1 95, 5, 0, 0 90 ± 1, 10 ± 1, 0, 0 

Ge0.75Sn0.25 11 ± 2 75, 25, 0, 0 78 ± 3, 22 ± 3, 0, 0 

Ge/3.4CdS 8 ± 2 19, 0, 41, 41 7 ± 1, 0, 49 ± 1, 44 ± 1 

Ge0.95Sn0.05/3.4CdS 8 ± 2 29, 2, 35, 35 67 ± 9, 8 ± 7, 18 ± 8, 7 ± 3 

Ge0.75Sn0.25/3.4CdS 13 ± 2 28, 9, 31, 31 58 ± 3, 4 ± 2, 16 ± 2, 22 ± 1 
aBased on a 100% GexSn1-x/CdS composition.  

 

 

 

Figure 3. Ge1-xSnx core and Ge1-xSnx /CdS core/shell nanocrystals: (a) Ge (6 ± 1 nm), (b) 

Ge/CdS (8 ± 2 nm), (c) Ge0.95Sn0.05 (6 ± 1 nm), (d) Ge0.95Sn0.05/CdS (8 ± 2 nm), (e) 

Ge0.75Sn0.25 (11 ± 2 nm), (f) Ge0.75Sn0.25/CdS (13 ± 2 nm). The average size measured 

from more than 300 nanocrystals is provided in parentheses. 
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Raman spectra for the Ge-Ge LO phonon mode of pure Ge and Ge1-xSnx alloy 

nanocrystals are shown in Figure 4a. As the Sn content is increased, the Ge LO phonon 

mode is shifted by -1.2 cm-1 (Ge0.95Sn0.05) and -4.4 cm-1 (Ge0.75Sn0.25). For the Ge1-xSnx 

alloy system, two additive factors determine the observed peak shift in the Ge-Ge LO 

phonon: the compositional (pure mass) effect and lattice strain. Deconvoluting the 

compositional effect and strain has been performed on films, where substrate conditions 

allow for tuning the strain.9, 64, 65, 77, 78 For small nanocrystals it is likely that the 

compositional effect dominates since strain within the alloy can be dissipated due to a high 

surface area.50 The smaller Raman shifts are thus primarily attributed to the larger Sn atoms 

expanding the crystal lattice as shown by XRD; longer (weaker) bonds are associated with 

a shift to lower energies. A plot of the Sn compositional dependence of the Ge-Ge LO 

phonon is shown in Figure 4b. For two batches of Ge1-xSnx nanocrystals prepared in the 

same way the best-fit line produced different slopes despite similar compositions being 

measured by XRD: Δω(x) = -(17 ± 1)x and Δω(x) = -(42 ± 5)x where x is the Sn 

composition. At present, it is unclear why the two sets of experiments showed different 

compositional dependence, and why these values are different than those reported for 

nanorods50 and strain-free films65—further experiments are underway to investigate this. 

The line traces shown in Figure 4a are two-peak Gaussian fits to the experimental spectra 

to account for asymmetry at lower Raman shifts. Asymmetry in the phonon peaks of small 

nanocrystals is attributed to contributions from surface optical (SO) phonons, which are 

typically slightly lower in energy than the corresponding LO phonons.79, 80 SO phonons are 

more prominent for anisotropic crystals.81 The Sn-Ge LO phonon was not observed in the 

Raman spectrum of the nanoalloy, which is consistent with previous work on thin films.65 

A Raman spectrum of GeO2 was also acquired to investigate the possibility of interference 

from surface oxidation (Figure S2), but no GeO2 bands are observed in the 280 to 320 cm-
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1 Ge-Ge LO phonon range, which is consistent with the literature.82 Likewise, no additional 

bands that correlate to GeO2 were observed outside this spectral range for the Ge and Ge1-

xSnx nanocrystal samples. 

 

Figure 4. (a) Normalized Raman spectra for Ge and Ge1-xSnx alloy nanocrystals and (b) Sn 

compositional dependence of Ge-Ge LO phonon peak position. As the Sn content increases, 

the Ge LO phonon peak is shifted to lower wavenumbers and the FWHM increases. Spectra 

were fit to 2-peak Gaussian curves (solid lines) to account for asymmetry. Average Raman 

peak properties are listed in Table S1.  

 

Synthesis and Characterization of Ge1-xSnx/CdS Core/Shell Nanocrystals. Freshly 

synthesized Ge1-xSnx cores were reacted with Cd and S precursors alternately to form CdS 

shells using the successive ion layer adsorption and reaction (SILAR) method.4, 83 Two 

preparation methods were employed: one using the synthetic mixture of the Ge1-xSnx cores 

without removing the residual precursors (one-pot synthesis), referred to as the crude Ge1-

xSnx sample, and the second using cores re-suspended in toluene after purification via 

centrifugation, referred to as the purified Ge1-xSnx sample. The XRD patterns and Raman 

spectra of the crude Ge1-xSnx samples showed unwanted SnS (Figure S3). Because the 

core/shell synthesis using crude core solutions did not generate monodisperse core/shell 

nanocrystals, all core/shell samples discussed in the remaining text were prepared using 

purified cores. Figure 5 shows XRD patterns of the core/shell nanocrystals. The Ge/CdS 
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sample showed mainly hexagonal wurtzite structure. Ge/CdS nanocrystals with a 

predominately wurtzite structure have been reported previously for a preparation using 

crude core solution.4 Polytypism in group IV and II-VI nanocrystals, as well as in their 

epitaxial (core/shell, etc.) systems is relatively common, and can be size-dependent.84-86  

 

 
 

Figure 5. Experimental powder X-ray diffraction (XRD) patterns of Ge/CdS and Ge1-

xSnx/CdS core/shell nanocrystals. The standard powder XRD patterns of bulk CdS zinc 

blende (cubic), CdS wurtzite (hexagonal), and Si diamond (* = used as an internal standard) 

are shown for comparison. 

To make the core/shell nanocrystals with different Sn incorporations comparable, 

we grew CdS shells with similar thicknesses. TEM images in Figure 3 show, in all cases, 

the core/shell nanocrystals increase 2 nm in diameter compared to their uncoated or bare 

cores. When compared to the known lattice parameter of CdS (either wurtzite or zinc blende 

give similar results), this shell thickness corresponds to the growth of 3.4 monolayers of 

CdS on the Ge1-xSnx cores. Area EDX scans containing several Ge1-xSnx cores agree with 
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their theoretical elemental composition; albeit the Ge content in Ge1-xSnx /CdS core/shells 

appears to be larger than the theoretical value. EDX elemental mapping of individual 

particles show that a majority of Ge1-xSnx cores are coated with CdS (Figure S4). Many of 

these core/shell particles have a relatively inhomogeneous shell, which is consistent with 

well documented studies on CdSe/CdS core/shell nanocrystals.73, 74, 87-89 

As in the classical CdSe/CdS system, inhomogeneous surface coverage in Ge1-xSnx 

/CdS core/shell nanocrystals is not an immediate problem, at least in terms of ensemble 

optical properties, as it is able to provide enough surface passivation to enhance and 

stabilize PL compared to the bare Ge1-xSnx cores. High resolution high-angle annular dark-

field (HAADF) STEM images of a Ge0.75Sn0.25/CdS nanocrystals (Figure S5) show the 

presence of continuous lattice fringes throughout each particle. 

Raman spectra for the Ge1-xSnx/CdS core/shell nanocrystals are shown in Figure 

S6. The Raman shift of the Ge-Ge LO phonon mode for the Ge/CdS nanocrystals is shifted 

by a statistically significant +1.1 cm-1 relative to the nanocrystals without a shell. This 

implies the shell generates compressive strain on the core, due to the smaller lattice 

parameter of CdS wurtzite compared to Ge (Ge = 5.658 Å, CdS wurtzite a = 4.135 Å). If 

CdS (with a peak maximum at 300 cm-1) spectrally interfered with the Ge LO optical 

phonon mode (with a peak maximum <296 cm-1 in the core material), we would expect the 

peak FWHM to increase. We conclude that CdS does not spectrally interfere in our data, 

as the peak FWHM is the same or slightly decreased for the core/shell nanocrystals. In 

addition, no peaks were measured for pure CdS nanocrystals measured under similar 

acquisition parameters as those used to collect the data in Figure S6. For the Ge1-xSnx 

core/shell samples, the shifts in the LO phonon mode upon shell addition are insignificant 

(Table S1). The lattice parameter for CdS zinc blende (5.82 Å) is closer to the lattice 

parameter of the alloy core materials (Table 1), particularly Ge0.75Sn0.25, which is consistent 
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with minimal compressive strain and a negligible phonon mode shift. The smaller lattice 

mismatch between the Ge1-xSnx core nanocrystals and the CdS shell facilitates epitaxial 

growth of the latter. 

X-Ray Photoelectron Spectroscopy of Ge/CdS and Ge1-xSnx/CdS Core/Shell 

Nanocrystals. XPS survey spectra of all core/shell nanocrystal samples are shown in the 

supporting information (Figure S7). XPS depth profiling was performed to reveal the sub-

surface information of the Ge/CdS core/shell nanocrystals and to corroborate the formation 

of a core/shell structure (Figure 6). We analyzed the chemical states of Ge, Cd, and S. 

There is no Ge signal above the noise in the initial etching cycles. After a few etching 

cycles, emerging peaks at ~29.5 eV in the Ge 3d energy region and ~1217 and 1250 eV in 

the Ge 2p energy region that correspond to metallic Ge0 were measured, along with a 

shoulder peak at ~32-33 eV corresponding to Ge2+/4+ (Figure 6a). These data are consistent 

with the chemical state of purified Ge core without any shell growth (Ge0), which exhibits 

a peak at ~29.5 eV, and mild surface oxidation (Ge2+/4+). Furthermore, the core/shell 

nanocrystals exhibited peaks throughout the etching at ~405 and ~412 eV corresponding to 

Cd, and a peak at ~162 eV, which corresponds to S2- (Figure 6c-d). This substructure 

information provides confirmation for the chemical speciation of the core/shell structure of 

Ge/CdS nanocrystals. 
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Figure 6. XPS depth profiles of Ge/CdS core/shell nanocrystals. Depth profiling uses an 

ion beam to etch the layers of the sample revealing sub-surface information; each etching 

cycle is 8 s and total etching time is indicated by the color of the spectra. Ge nanocrystals 

with no shell are shown as dashed lines in (a) and (b) for reference, and all the spectra are 

calibrated to adventitious carbon at 284.6 eV. 

We similarly analyzed the chemical states of Ge, Sn, Cd, and S in the purified 

Ge1-xSnx and Ge1-xSnx/CdS core/shell nanocrystals (Figure 7). XPS confirms the element 

distribution in alloy nanocrystals. The Ge 3d peak at ~29.5 eV and a shoulder around 

~32-33 eV corresponds to Ge0 and Ge2+/4+ species, respectively. The peak at ~486 eV 

corresponds to Sn4+ species (SnO2). Ge and Sn in higher oxidation states indicate post-

synthetic surface oxidation. The core/shell  
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Figure 7. X-ray photoelectron spectra (XPS) of (a-b) Ge0.95Sn0.05 , (c-d) Ge0.95Sn0.05/CdS, 

(e-f) Ge0.75Sn0.25, and (g-h) Ge0.75Sn0.25/CdS nanocrystals. All the spectra are calibrated to 

adventitious carbon at 284.6 eV. 

 

Luminescence Properties of Ge1-xSnx Core and Ge1-xSnx/CdS Core/Shell 

Nanocrystals. The solution phase optical density spectra of Ge and Ge1-xSnx nanoscrystals 
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show no prominent absorption features (Figure 8), which could be due to the small bandgap 

(0.66 eV, 1876 nm for bulk Ge, Figure S8) being out of our instrument range. The Ge1-

xSnx/CdS core/shell nanocrystals have absorption onsets at 450-500 nm, which is consistent 

with the bandgap of quantum confined CdS shells (Figure S8).90  

 

 
 

Figure 8. Solution phase optical density (absorption and scattering) spectra of Ge, Ge1-

xSnx, Ge/CdS and Ge1-xSnx/CdS nanocrystals suspended in toluene. 

 

Photoluminescence spectra of the nanocrystals corrected for optical density at the 

excitation wavelength of 350 nm are shown in Figure 9. For the nanocrystals without shells, 

the signals from all samples were too low to confidently discriminate them from the instrument's 

background. This means there is no detectable PL from any of the core-only nanocrystals. 

Sn inclusion in the alloy nanocrystals is thus not associated with an increase in 

luminescence intensity. Assuming the doped and undoped samples had similar surface 

defects and surface oxidation, there is no indication that a more direct band gap character 

was achieved in the Sn-doped nanocrystals, as an enhanced PL response was not measured. 

On the other hand, all the core/shell nanocrystals display an enhanced near infrared PL 

compared to the Ge1-xSnx and Ge nanocrystals without shells. With a bulk band gap of 0.66 

eV (Figure S8), the PL spectra indicate these core/shells are also quantum confined. The 
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PL enhancements of Ge0.75Sn0.25/CdS and Ge0.95Sn0.05/CdS were 15× and 12× greater than 

Ge/CdS, respectively. The luminescence intensity decreases when oxidation is measured 

by the presence of a Ge-O band in the FT-IR spectrum. Ge0.75Sn0.25/CdS core/shells where 

no oxidation was present show the highest PL intensity. In another set of experiments where 

oxidation was measured by FT-IR spectroscopy (for example Figure S9 shows an example 

of oxidation in the Ge0.75Sn0.25 sample), the oxidized core/shells exhibited 100× lower 

luminescence than the non-oxidized Ge0.75Sn0.25/CdS sample (Figure 9). The observed PL 

enhancement is most likely due to more effective surface passivation by the CdS shell on 

the Ge1-xSnx cores, because Sn inclusion in the core without the shell did not result in a 

higher PL response (see above), whereas oxidation reduces luminescence. Considering the 

lattice parameters of the core and shell, doping the core with Sn leads to improved epitaxy 

(smaller lattice mismatch with the shell). This may produce improved crystal growth for 

core/shell nanocrystals with fewer defects within the crystals that can quench 

photoluminescence. 

 
  

Figure 9. Relative near infrared photoluminescence (PL) spectra of the Ge and Ge1-xSnx 

cores and requisite core/shell nanocrystals. The intensity is normalized by the optical 



www.manaraa.com

129 

 

density at the excitation wavelength, λexc = 350 nm. The Ge, Ge0.95Sn0.05, Ge0.75Sn0.25, and 

oxidized Ge0.75Sn0.25/CdS samples overlap on this scale. 

 

  

Excited-state lifetime measurements for the core/shell nanocrystals are shown in 

Figure 10. These measurements were performed on only the core/shell nanocrystals 

because the PL intensity of the core-only particles was too low to measure the lifetimes. 

The Ge/CdS nanocrystals yielded a lifetime of 4.1 µs, which is similar to the previous 

finding of Guo et al.4 Upon incorporation of Sn in the Ge core, the PL lifetimes decreased 

to 2.8 and 1.0 µs for Ge0.95Sn0.05/CdS and Ge0.75Sn0.25/CdS, respectively. The observed 

decrease in PL lifetime along with higher steady state PL intensity in the core/shell 

nanocrystals could be indicative of a more direct band gap. However, there may be no 

correlation between the steady state PL intensity and the lifetimes of these materials. In 

order to correlate these two measurements, one would have to show the emitting states are 

the same for all types of nanocrystals; however, and unlike the case of coating cores of the 

exact same material but having different sizes, there is no reason to assume this is the case 

for our series because they are based on chemically distinct cores (materials with different 

doping levels). 

 
 

Figure 10. Time-resolved photoluminescence traces of Ge/CdS, Ge0.95Sn0.05/CdS, and 

Ge0.75Sn0.25/CdS core/shell nanocrystals. The decays of Ge/CdS and Ge0.95Sn0.05/CdS are 
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single-exponential with lifetimes of 4.1 µs and 2.8 µs, respectively, while a double-

exponential was used for Ge0.75Sn0.25/CdS, yielding an average lifetime of 1.0 µs. 

Conclusion 

Ge1-xSnx alloy nanocrystals and Ge1-xSnx core/shell nanocrystals were prepared via 

solution-based synthesis and characterized by XRD, TEM, Raman, optical, and X-ray 

photoelectron spectroscopy. Incorporation of Sn did not increase the PL intensity in the 

cores, but core/shell nanocrystals prepared using the Sn-doped cores and CdS shell show 

up to 15× enhanced PL when compared to Ge/CdS materials. This is explained by improved 

epitaxy between the lattice-expanded Sn-doped Ge cores and the structurally similar CdS 

shell, along with reduced surface oxidation. The combination of scalability and improved 

PL intensities make these Ge1-xSnx core/shell nanocrystals promising alternatives to other 

near infrared-active materials for use as functional materials in solar cells and LEDs. In 

addition, these nanocrystals have potential as anode materials in advanced lithium ion 

batteries, and when combined with available biocompatibility steps (ligand exchange and 

surface-protection or encapsulation), as near-infrared luminescent markers in biological 

studies. 
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Supporting Information 

 

Figure S1. TEM size distribution plots for Ge and Ge1-xSnx nanocrystals and core/shell 

nanocrystals made via overlaying with CdS. 

 

Figure S2. Raman spectrum of solid GeO2. 

 

Figure S3. Raman spectrum of the Ge0.75Sn0.25 and Ge0.75Sn0.25/CdS core/shell nanocrystals 

made with crude core solution. The core/shell sample show bands that correlate to reported 

Raman peaks of SnS at ~95, 190, and 220 cm-1.  
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Figure S4. Three representative sets of (a) high-resolution HAADF STEM images of 

Ge0.75Sn0.25/CdS nanocrystals with registered EDX elemental mapping for (b) Ge, Sn, Cd, 

and S, (c) Ge, (d) Cd, (e) Sn, and (f) S. 
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Figure S5. Three sample high resolution high-angle annular dark-field (HAADF) STEM 

images of a Ge0.75Sn0.25/CdS nanocrystals. The average atomic number (Z) of the CdS shell, 

32, is similar to that of the Ge core material, 32, making contrast comparisons difficult. 

However, the presence of continuous lattice fringes throughout each particle is an 

indication of crystallinity across these core/shell particles. 

 

Figure S6. Raman spectra of the Ge1-xSnx/CdS core/shell nanocrystals.  
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Table S1. Summary of Raman peak locations of the Ge-Ge LO and SO phonon modes for 

the Ge and Ge1-xSnx nanocrystals and core/shell nanocrystals. Each value is an average of 

5 replicate measurements. All 5 replicate spectra were fit to 2-peak Gaussian curves to 

account for asymmetry due to the SO phonon appearing at lower wavenumbers, and the 

values were subsequently averaged to produce these data. 

Sample 
Longitudinal Optical Phonon Mode Surface Optical Phonon Mode 

Location (cm-1) FWHM (cm-1) Location (cm-1) FWHM (cm-1) 

Ge cores 296.4 ± 0.4  11.4 ± 0.6 283.0 ± 0.6  47 ± 4 

Ge0.95Sn0.05 295.2 ± 0.5 13 ± 3 283 ± 2 60 ± 10 

Ge0.75Sn0.25 292 ± 1 19 ± 3 280 ± 10 60 ± 10 

Ge/CdS 297.5 ± 0.5 12.7 ± 0.5 283 ± 1 47 ± 2 

Ge0.95Sn0.05/CdS 295 ± 1 10.6 ± 0.9 286 ± 1 36.9 ± 0.6 

Ge0.75Sn0.25/CdS  291.1 ± 0.5 11.5 ± 0.6 282.8 ± 0.6 36.4 ± 0.7 

 

 

Figure S7. XPS survey spectra for Ge and Ge1-xSnx core and core/shell nanocrystals. 

Samples indicated at the lower left of each trace. 
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Figure S7. (continued) XPS survey spectra for Ge and Ge1-xSnx core and core/shell 

nanocrystals. Samples indicated at the lower left of each trace. 

 

 

Figure S8. Plot of valence and conduction band offsets for Ge, Sn, and CdS. 
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Figure S9. Fourier transform infrared spectra of Ge and Ge1-xSnx core (left) and core/shell 

(right) nanocrystals. Note the intense Ge-O band in the Ge0.75Sn0.25 sample, corresponding 

to increased oxidation in that sample. In another set of experiments no oxidation was 

measured in the Ge0.75Sn0.25 sample as explained in the text. 
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CHAPTER 6.    CONCLUSION 

In conclusion, we investigated the different synthetic approaches of halide 

perovskites and germanium semiconductors. In Chapter 2, we report the synergetic effects 

of halide and bulky alkylammonium cation incorporation on tuning emission energy of 

halide perovskites. We also demonstrated the role of excess precursor on 

photoluminescence stability in nanostructured perovskites. In Chapter 3, we discuss 

synthesis of perovskite nanocrystals using antimony perovskites as ligands. In Chapter 4, 

We describe the synthetic approaches of lead-free germanium perovskites and the 

feasibility of manganese incorporation in germanium perovskites. In addition to perovskite 

semiconductors, we also discussed the synthesis exploration of Ge1-xSnx alloy nanocrystals 

and Ge1-xSnx core/shell nanocrystals with enhanced near infrared photoluminescence in 

Chapter 5.   

We combine composition-control with dimensionality-control of organometal 

halide perovskite crystals by tuning halide-incorporation and exploiting bulky 

alkylammonium cations as capping ligands. We demonstrate a systematic synthesis of all 

the series of mixed halide perovskite polycrystals and their low dimensional analogues. 

Emission spectra of mixed halide perovskites cover the whole visible light region from 400 

nm to 780 nm. The quantum yield of bromide perovskites is up to 44%. Also, we noticed 

the emission spectrum of perovskite nanocrystals has a reversible photo-induced 

photoluminescence peak transition. We speculate this PL peak is derived from surface 

traps. By optimizing synthetic conditions, we are able to inhibit the appearance of a 

reversible photoinduced PL peak derived from surface traps. 

To address the concerns about the heavy element lead in conventional lead 

perovskites, we successfully synthesized antimony doped lead perovskite nanocrystals 

employing a surfactant-free method. By adding precursor solution into a non-polar solvent, 
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CH3NH3PbI3-(CH3)3Sb2I9 nanocrystals can be crashed out.  By introducing SbI3 to partially 

replace PbI2 in the precursor lead perovskite solution, layered (CH3)3Sb2I9 covers the 

surface of CH3NH3PbI3 and terminates crystal growth during the crash-out process. The 

hybrid nanocrystals synthesized with (CH3)3Sb2I9 show higher PL quantum yield than bulk 

CH3NH3PbI3. Nanocrystals prepared with only n-octylammonium have a higher PL 

intensity than those prepared in the presence of both n-octylammonium and (CH3)3Sb2I9. 

Nanocrystals prepared using (CH3)3Sb2I9 may be idealized in the photo-electronic devices, 

as no organic ligands are present on the perovskite surface that inhibit charge transport 

using the Sb film. 

We also developed a synthetic approach to germanium perovskites and their 

nanocrystals. CsGeI3 exhibits a similar bandgap (1.6 eV) and corner-sharing octahedra 

network as lead perovskites that are potentially promising for photovoltaics. Size control 

of CsGeI3 perovskite nanocrystals is achieved by using cysteammonium cations as capping 

ligands. Diffraction peak broadening in powder XRD and TEM images corroborate the 

successful size control without introducing impurities. Diffuse reflectance measurements 

also reveal a bandgap blue-shift of 0.05 eV in the nanocrystals. Because the sizes of the 

nanocrystals are much larger than the Bohr radius, it is unlikely this blue shift is the result 

of quantum confinement. In addition, we have also doped Mn2+ into CsGeI3 lattice. XRD 

patterns show a lattice expansion with increasing manganese iodide loading, which we 

believed is caused by the substitution of Ge2+ by larger Mn2+. The manganese incorporation 

percentage is up to 29% according to Vegard’s law. EPR analysis also confirms the 

presence of Mn2+ and indicates Mn2+ sites are highly distorted, which is in good agreement 

with Ge2+ sites in CsGeI3. We expect these results will extend the arsenal of perovskites, 

especially the lead-free ones, beyond photovoltaics and to the fields of spintronics and 

magnetic data storage. 
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In addition to perovskite semiconductor, we expand our research interest to 

germanium semiconductor. To get a direct bandgap germanium semiconductor, Ge1-xSnx 

alloy nanocrystals and Ge1-xSnx core/shell nanocrystals were prepared via solution-based 

synthesis. Incorporation of Sn was confirmed by XRD and Raman peak shift. Tin itself did 

not increase the PL intensity in the cores, but core/shell nanocrystals prepared using the 

Sn-doped cores and CdS shell show up to 15× enhanced PL when compared to Ge/CdS 

materials. This could be explained by improved epitaxy between the lattice-expanded Sn-

doped Ge cores and the structurally similar CdS shell, along with reduced surface oxidation. 

The combination of scalability and improved PL intensities make these Ge1-xSnx core/shell 

nanocrystals promising alternatives to other near infrared-active materials for use as 

functional materials in solar cells, LEDs and bio-imaging. 
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APPENDIX.  ROLE OF EXCESS PRECURSOR ON 

PHOTOLUMINESCENCE STABILITY 

Daniel J. Freppon, Ujjal Bhattacharjee, Jacob W. Petrich, Emily A. Smith 

PL Lifetime Measurements. PL lifetime measurements were performed with a time-

correlated single-photon counting (TCSPC) technique. Here, we used different excitation 

wavelengths of 500 nm, 570 nm and 638 nm. 500 nm and 570 nm were generated using a 

supercontinuum laser (Fianium Ltd.) with 10 nm band-pass filters and laser repetition rate 

of 1 MHz. 638 nm was generated using a pulse diode laser from PicoQuant (model PDL 

800-B) using a repetition rate of 5-MHz. A Becker & Hickl photon counting card (model 

SPC-630) was used with a MCP-PMT detector. With this system, the full width at half-

maximum of the instrument response function (IRF) was ∼200 ps. A 1 cm path length 

cuvette was used. Longpass filters or a monochromator were used to collect emission in 

order to eliminate scattered excitation light and collect the decay for a particular wavelength 

band. The decay parameters were calculated by fitting the decay to a sum of exponentials 

after deconvolution of the IRF from the decay. Time-Resolved PL Emission Measurements. 

Time-resolved emission spectra (TRES) were measured with a home built nanosecond 

setup. A Continuum Surelite II laser (5ns, 20 Hz) was used. A 532 nm or a third-harmonic 

355 nm were used as excitation wavelengths. Spectra were collected at different times after 

the laser pulse with a synchronized ICCD camera coupled with a spectrograph. Samples 

were measured in toluene solution in 1 cm path length cuvettes. Absorption and 

photoluminescence spectra were monitored before and after the laser experiment. 

Single Particle Fluorescence Microscopy. Single particle fluorescence microscopy 

was performed using an inverted microscope (Nikon Eclipse TE2000U, Melville, NY, 

USA). Perovskite solutions (toluene, ~0.3 mM, 50 μL) were sonicated for 60 min before 

drop casting onto a glass microscope coverslip (Carlson Scientific, Peotone, IL). A mercury 
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lamp was used for excitation (XCite 120 PC, EXFO Photonic Solutions Inc., Quebec City). 

Excitation and emission filters were from Omega Optical (Brattleboro, VT, USA), unless 

noted otherwise. 545-530 nm excitation and 700-775 nm emission filters were used for 

CH3NH3PbI3, 620-650/25 nm excitation and 690-670 nm emission filters 

CH3NH3Pb(Br0.25I0.75)3, 500-520 nm excitation and 629/56 nm emission filters (in this case, 

from Semrock, Inc., Lake Forest, IL, USA) CH3NH3Pb(Br0.50I0.50)3, and 500-520 nm 

excitation and 535-530 nm emission filters for CH3NH3Pb(Br0.75I0.25)3 and CH3NH3PbI3. A 

100× PlanApo, 1.49 numerical aperture oil-immersion objective was used and PL images 

were collected using a PhotonMAX 512 EMCCD camera (Princeton Instrument, Trenton, 

NJ, USA) with a 20 ms exposure time. A gain of 3000 was used for all of the samples, 

except no gain was used for CH3NH3PbI3 perovskites. 

Luminescence Microscopy. A lab-built luminescence microscope based on a DM 

IRBE platform (Leica, Wetzlar, Germany) with a laser excitation of 532 nm for 

CH3NH3PbI3 (Sapphire SF 532 nm, Coherent, Santa Clara, CA, USA) or 488 nm for 

CH3NH3PbBr3 (Argon Ion 488 nm, Uniphase, San Jose, CA) was used. A 100× HCX PL 

APO, 0.25 numerical aperture oil-immersion objective (Leica) was used to achieve a laser 

spot with a diameter of 0.28 ± 0.03 μm. The excitation power density at the sample was 1.6 

× 105 W∙cm−2. PL was collected from the epi-direction and focused onto a HoloSpec f/1.8i 

spectrograph (Kaiser Optical Systems, Ann Arbor, MI, USA), equipped with a broad range 

grating (HFG-650, Kaiser Optical Systems) then directed to a charged coupled device 

(CCD) (Newton 940, Andor Technology, Belfast, UK). Collection or binning time was 0.05 

s. A series of 2400 spectra were collected every 0.09873 seconds. 

Time-resolved photoluminescence decays of low-dimensional (Figure 1) and 

polycrystalline CH3NH3PbX3 crystals demonstrate radiative lifetimes in the range of 5−84 
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ns with faster emission in bulk crystals. Single halide perovskites also exhibit a longer 

lifetime than mixed halide perovskites. 

 

Figure 1. Time-resolved PL decay of low dimensional mixed-halide organolead 

perovskites (except 100%Cl for its low PL intensity not detectable by our instruments). 

Synthesis-Dependent Formation of Reversible Surface Traps: Effect of Excess 

Halide Precursor. Adding octylammonium may introduce some impurities into the system. 

For example, 25%Br 75%I shows peaks in addition to the main peak at 646 nm (Figure 2). 

This red PL peak might come from iodine-enriched domains in the samples or some species 

produced by the reaction of octylammonium halides and lead halides on the surface of 

perovskite nanocrystals. It is reported that RNH3PbI3 has a smaller bandgap with longer 

carbon chains in R. The Bohr radii for bromide and iodide perovskites are 2 and 2.2 nm, so 

no quantum confinement effect should take place in absorption or emission spectra, which 

further agrees with the results of our optical measurements. 
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Figure 2. (a) Emission spectra of low-dimensional CH3NH3PbI3 as a function of excitation 

power, normalized at 730 nm; (b) Time resolved emission spectra (TRES) of low-

dimensional CH3NH3PbI3 taken at a gap of 5 ns. The laser energy is 5 mJ. 

In an earlier synthetic method, we used a 1: 6 ratio of lead halide and 

alkylammonium halides (a: b: c = 1: 3: 3) to fabricate low-dimensional perovskites. The 

fresh solution shows the characteristic emission peak around 730 nm along with a blue-

shifted emission peak around 630 nm. This bluer peak is excitation power-dependent: the 

intensity increases with higher laser power as shown in Fig. 2a.  We collected in situ XRD 

during illumination; however, no additional peaks were observed. These results indicate 

that this blue PL peak comes from surface trap states. To eliminate this peak, we optimized 

the synthetic method and successfully fabricated perovskites without the bluer peak. Fig. 

7b shows time resolved emission spectra (TRES) of a fresh, low-dimensional CH3NH3PbI3 

solution made from the optimized synthetic method (a: b: c = 1: 1.5: 1.5). Apparently, no 

blue peak is observed in this sample, which implies the optimized method can synthesize 

trap-free organometal mixed-halide perovskites. 

To examine the stability of perovskites prepared by the new synthetic method along 

with the effect of purification, we performed a purification experiment: a batch of 24-hour-

aged perovskite toluene solution, prepared by the optimized method, divided into four 

solutions. Two were precipitated and resuspended in either pure toluene or an 

alkylammonium halide toluene solution with an alkylammonium halide concentration 
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equal to the precursor solution, labelled as ‘washed’ and ‘washed with excess RNH3I’; 

another sample was given excess RNH3I to achieve an equal concentration as the precursor 

solution and was labelled as ‘unwashed with excess RNH3I’; the last sample was not 

changed and was labelled ‘unwashed’. As shown in Fig. 3, emission spectra of washed 

sample are the most stable throughout the experiment, which illustrates purification 

increase the stability of the sample. Both the sample washed with excess RNH3I and the 

unwashed sample show PL decay within 100 seconds; however, their PL maxima do not 

shift dramatically. As for the unwashed sample with excess RNH3I, PL maxima shift from 

685 nm to 765 nm with increasing PL intensity, which is consistent with previous 

observations. The blue peak gradually disappears whereas the red peak increases with aging 

time. CH3NH3PbBr3 is more stable compared to CH3NH3PbI3 because the maximum PL 

shift is only 17 nm, from 528 nm to 545 nm (Fig. 3 and 4). 

 

Figure 3.  Plots of peak luminescence versus illumination time with a 532 nm laser (1.58 

× 105 W/cm2) for 100%I perovskites synthesized using a 1 PbI2 : 1.5 CH3NH3PbI : 1.5 

C8H17NH3I precursor ratio. A control experiment where samples are synthesized (black) 

with and (red) without a final wash step.  The (green) washed and (blue) unwashed samples 

were then exposed to excess precursor.  The addition of excess precursor revealed that a 

PL emission peak near 800 nm is observed unless the samples were unwashed.  In the 
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unwashed sample, the addition of excess precursor leads to a shift in the photoluminescence 

spectra to maxima of 750 – 765 nm. 

 

Figure 4.  Plots of luminescence versus illumination time with a 488 nm laser (1.58 × 105 

W/cm2) for 100%Br perovskites synthesized using a 1 PbBr2 : 1.5 CH3NH3PbBr : 1.5 

C8H17NH3Br precursor ratio.  A control experiment where samples are synthesized (black) 

with and (red) without a final wash step.  The (green) washed and (blue) unwashed samples 

were then exposed to excess precursor.  All samples have a PL emission peak was variant 

between 528 nm to 545 nm. 
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